1887

Abstract

A Gram-negative, rod-shaped bacterium, strain DN04, was isolated from the soil of a maize field in North Carolina, USA. Based on the 16S rRNA gene sequence, the most similar species are Sac-22, DCY83, and Sac-41 with a 97.8, 97.6, or 96.9 % sequence similarity, respectively. We compared the biochemical phenotype of DN04 to Sac-22 and 115 and other reference strains from different genera within the Oxalobacteraceae and while the biochemical profile of DN04 is most similar to Sac-22 and other and strains, there are also distinct differences. DN04 can for example utilize turanose, N-acetyl--glucosamine, inosine, and -pyroglutamic acid. The four fatty acids found in the highest percentages were C iso (24.6 %), C isoG (19.4 %), C iso3-OH (16.8 %), and summed feature 3 (C ⍵7c and/or C ⍵6c) (12.5 %). We also applied whole genome sequencing to determine if DN04 is a novel species. The most similar AAI (average amino acid identity) score was 70.8 % ( NZ CP038026), and the most similar ANI (average nucleotide identity) score was 84.8 % ( KCTC 22382), which indicates that DN04 is a novel species. The genome-to-genome-distance calculation (GGDC) revealed a DDH of 28.3 % to KCTC 22382, which is much lower than the new species threshold. Based on the morphological, phenotypic, and genomic differences, we propose sp. nov. as a novel species within the genus (type strain DN04=NRRL B-65552=LMG 31736).

Funding
This study was supported by the:
  • South Dakota Agricultural Experiment Station
    • Principle Award Recipient: RachelRaths
  • Novozymes
    • Principle Award Recipient: RachelRaths
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004599
2020-12-03
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/1/ijsem004599.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004599&mimeType=html&fmt=ahah

References

  1. Su C, Lei L, Duan Y, Zhang K-Q, Yang J. Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 2012; 93:993–1003 [View Article][PubMed]
    [Google Scholar]
  2. Hirsch PR, Mauchline TH, Clark IM. Culture-independent molecular techniques for soil microbial ecology. Soil Biol Biochem 2010; 42:878–887 [View Article]
    [Google Scholar]
  3. Woźniak M, Gałązka A. The rhizosphere microbiome and its beneficial effects on plants – current knowledge and perspectives. Postepy Mikrobiologii 2019; 58:59–69 [View Article]
    [Google Scholar]
  4. Garrity GM, Bell JA, Lilburn T. Bergey’s Manual of Systematics of Archaea and Bacteria Bergey’s Manual Trust; 2015
    [Google Scholar]
  5. Garrity GM. Bergey’s Manual of Systematic Bacteriology, 2nd ed. East Lansing, MI: Springer; 2005
    [Google Scholar]
  6. Baldani JI, Rouws L, Cruz LM, Olivares FL, Schmid M et al. The Family Oxalobacteraceae. The Prokaryotes- Alphaproteobacteria and Betaproteobacteria Berlin Heidelberg: Springer-Verlag; 2014 pp 920–968
    [Google Scholar]
  7. Friedman BA, Dugan PR. Identification of zoogloeaZoogloea species and the relationship to zoogloeal matrix and floc formation. J Bacteriol 1968; 95:1903–1909 [View Article][PubMed]
    [Google Scholar]
  8. Hiraishi A, Shin YK, Sugiyama J. Proposal to reclassify Zoogloea ramigera IAM 12670 (P. R. Dugan 115) as Duganella zoogloeoides gen. nov., sp. nov. Int J Syst Bacteriol 1997; 47:1249–1252 [View Article][PubMed]
    [Google Scholar]
  9. Parte AC. LPSN - List of Prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  10. Li W-J, Zhang Y-Q, Park D-J, Li C-T, Xu L-H, WJ L, CT L, LH X et al. Duganella violaceinigra sp. nov., a novel mesophilic bacterium isolated from forest soil. Int J Syst Evol Microbiol 2004; 54:1811–1814 [View Article][PubMed]
    [Google Scholar]
  11. Kämpfer P, Wellner S, Lohse K, Martin K, Lodders N. Duganella phyllosphaerae sp. nov., isolated from the leaf surface of Trifolium repens and proposal to reclassify Duganella violaceinigra into a novel genus as Pseudoduganella violaceinigra gen. nov., comb. nov. Syst Appl Microbiol 2012; 35:19–23 [View Article][PubMed]
    [Google Scholar]
  12. Madhaiyan M, Poonguzhali S, Saravanan VS, Hari K, Lee K-C et al. Duganella sacchari sp. nov. and Duganella radicis sp. nov., two novel species isolated from rhizosphere of field-grown sugar cane. Int J Syst Evol Microbiol 2013; 63:1126–1131 [View Article][PubMed]
    [Google Scholar]
  13. Zhang J, Kim Y-J, Hoang V-A, Lan Nguyen N, Wang C et al. Duganella ginsengisoli sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 2016; 66:56–61 [View Article][PubMed]
    [Google Scholar]
  14. H-B L, Cai Z-P, Yang Y-G, M-Y X. Duganella rivus sp. nov., Duganella fentianensis sp. nov., Duganella qianjiadongensis sp. nov. and Massilia guangdongensis sp. nov., isolated from subtropical streams in China and reclassification of all species within genus Pseudoduganella . Anton Leeuw Int J G 2020; 113:1155–1165
    [Google Scholar]
  15. Lu H, Deng T, Liu F, Wang Y, Yang X et al. Duganella albus sp. nov., Duganella aquatilis sp. nov., Duganella pernnla sp. nov. and Duganella levis sp. nov., isolated from subtropical streams in China. Int J Syst Evol Microbiol 2020; 70:
    [Google Scholar]
  16. Hiraishi Shin S. Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc; 2015
    [Google Scholar]
  17. Valdes N, Soto P, Cottet L, Alarcon P, Gonzalez A et al. Draft genome sequence of Janthinobacterium lividum strain MTR reveals its mechanism of capnophilic behavior. Stand Genomic Sci 2015; 10:110 [View Article][PubMed]
    [Google Scholar]
  18. Choi SY, Kim S, Lyuck S, Kim SB, Mitchell RJ. High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus . Sci Rep 2015; 5:15598 [View Article][PubMed]
    [Google Scholar]
  19. Andrighetti-Fröhner CR, Antonio RV, Creczynski-Pasa TB, Barardi CRM, Simões CMO. Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum . Mem Inst Oswaldo Cruz 2003; 98:843–848 [View Article][PubMed]
    [Google Scholar]
  20. Matz C, Deines P, Boenigk J, Arndt H, Eberl L et al. Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 2004; 70:1593–1599 [View Article][PubMed]
    [Google Scholar]
  21. Hashimi SM, Xu T, Wei MQ. Violacein anticancer activity is enhanced under hypoxia. Oncol Rep 2015; 33:1731–1736 [View Article][PubMed]
    [Google Scholar]
  22. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A. Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 2014; 3:ISSN: 2319-7706432-–4447
    [Google Scholar]
  23. Haack FS, Poehlein A, Kröger C, Voigt CA, Piepenbring M et al. Molecular keys to the Janthinobacterium and Duganella spp. interaction with the plant pathogen Fusarium graminearum . Front Microbiol 2016; 7:1668 [View Article][PubMed]
    [Google Scholar]
  24. Bajaj M, Schmidt S, Winter J. Formation of Se (0) nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of north-east Punjab, India. Microb Cell Fact 2012; 11:64 [View Article][PubMed]
    [Google Scholar]
  25. Willgohs JA, Bleakley BH. Laboratory Manual for General Microbiology United States of America: Pearson; 2009
    [Google Scholar]
  26. Zhang Y-Q, Li W-J, Zhang K-Y, Tian X-P, Jiang Y et al. Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 2006; 56:459–463 [View Article][PubMed]
    [Google Scholar]
  27. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  28. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article][PubMed]
    [Google Scholar]
  29. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article][PubMed]
    [Google Scholar]
  30. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 2018; 46:W537–W544 [View Article][PubMed]
    [Google Scholar]
  31. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  32. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  33. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  34. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 2005; 33:5691–5702 [View Article][PubMed]
    [Google Scholar]
  35. Raths R, Peta V, Bücking H. Draft genome sequence of Duganella sp. strain DN04, isolated from cultivated soil. Microbiol Resour Announc 2019; 8:e00848–00819 [View Article][PubMed]
    [Google Scholar]
  36. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM et al. The microbial genomes atlas (MiGA) Webserver: taxonomic and gene diversity analysis of archaea and bacteria at the whole genome level. Nucleic Acids Res 2018; 46:W282–W288 [View Article][PubMed]
    [Google Scholar]
  37. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  38. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  39. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  41. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article][PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article][PubMed]
    [Google Scholar]
  43. Czaban J, Gajda A, Wroblewska B. The motility of bacteria from rhizosphere and different zones of winter wheat roots. Pol J Environ Stud 2007; 16:301–308
    [Google Scholar]
  44. BIOLOG Gen III MicroPlate instructions for use. Biolog Hayward, CA: Biolog; 2013
    [Google Scholar]
  45. Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat 1996; 5:299–314
    [Google Scholar]
  46. Uehara T, Park JT. The N-acetyl-D-glucosamine kinase of Escherichia coli and its role in murein recycling. J Bacteriol 2004; 186:7273–7279 [View Article][PubMed]
    [Google Scholar]
  47. Leyssen P, Charlier N, Paeshuyse J, De Clercq E, Neyts J. Prospects for antiviral therapy. Adv Virus Res 2003; 61:511–553 [View Article][PubMed]
    [Google Scholar]
  48. Niehaus TD, Elbadawi-Sidhu M, Fiehn O, Hanson AD. Discovery of a widespread prokaryotic 5-oxoprolinase that was hiding in plain sight. J Biol Chem 2017; 292:16360–16367 [View Article][PubMed]
    [Google Scholar]
  49. Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 2015; 6:791 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004599
Loading
/content/journal/ijsem/10.1099/ijsem.0.004599
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error