1887

Abstract

A haloalkaliphilic strain XQ-INN 246 was isolated from the sediment of a salt pond in Inner Mongolia Autonomous Region, China. Cells of the strain were rods, motile and strictly aerobic. The strain was able to grow in the presence of 2.6–5.3 M NaCl (optimum concentration is 4.4 M) at 30–50 °C (optimum temperature is 42 °C) and pH 7.0–10.0 (optimum pH is 8.0–8.5). The whole genome sequencing of strain XQ-INN 246 revealed a genome size of 4.52 Mbp and a DNA G+C content of 62.06 mol%. Phylogenetic tree based on 16S rRNA gene sequences and concatenated amino acid sequences of 122 single-copy conserved proteins revealed a robust lineage of the strain XQ-INN 246 with members of related genera of the family . The strain possessed the polar lipids of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. No glycolipids were detected. Based on phylogenetic analysis, phenotypic characteristics, chemotaxonomic properties and genome relatedness, the isolate was proposed as the type strain of a novel species of a new genus within the family for which the name gen. nov., sp. nov. is proposed. The type strain is XQ-INN 246 (=CGMCC 1.16692=JCM 33751).

Funding
This study was supported by the:
  • Science and Technology Basic Resources Investigation Project (Award 2017FY100300)
    • Principle Award Recipient: NotApplicable
  • National Natural Science Foundation of China (Award 91751201)
    • Principle Award Recipient: HuaXiang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004584
2020-12-04
2024-09-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/1/ijsem004584.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004584&mimeType=html&fmt=ahah

References

  1. Gupta RS, Naushad S, Baker S. Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 2015; 65:1050–1069 [View Article][PubMed]
    [Google Scholar]
  2. Sorokin DY, Toshchakov SV, Kolganova TV, Kublanov IV. Halo(natrono)archaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates. Front Microbiol 2015; 6:942 [View Article][PubMed]
    [Google Scholar]
  3. Ding JY, Chen SC, Lai MC, Liao TL. Haloterrigena mahii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 2017; 67:1333–1338 [View Article][PubMed]
    [Google Scholar]
  4. Xu Y, Zhou P, Tian X. Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int J Syst Bacteriol 1999; 49:261–266 [View Article][PubMed]
    [Google Scholar]
  5. Masahiro K, Dyall-Smith ML. Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba . J Gen Appl Microbiol 2006; 41:333–350
    [Google Scholar]
  6. Oren A, Ventosa A. Natrialbaceae: American Cancer Society; 2017
  7. Mehrshad M, Amoozegar MA, Makhdoumi A, Rasooli M, Asadi B et al. Halovarius luteus gen. nov., sp. nov., an extremely halophilic archaeon from a salt lake. Int J Syst Evol Microbiol 2015; 65:2420–2425 [View Article][PubMed]
    [Google Scholar]
  8. Yin XQ, Liu BB, Chu X, Salam N, Li X et al. Saliphagus infecundisoli gen. nov., sp. nov., an extremely halophilic archaeon isolated from a saline soil. Int J Syst Evol Microbiol 2017; 67:4154–4160 [View Article][PubMed]
    [Google Scholar]
  9. Minegishi H, Shimogaki R, Enomoto S, Echigo A, Kondo Y et al. Halopiger thermotolerans sp. nov., a thermo-tolerant haloarchaeon isolated from commercial salt. Int J Syst Evol Microbiol 2016; 66:4975–4980 [View Article][PubMed]
    [Google Scholar]
  10. Romano I, Poli A, Finore I, Huertas FJ, Gambacorta A et al. Haloterrigena hispanica sp. nov., an extremely halophilic archaeon from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 2007; 57:1499–1503 [View Article][PubMed]
    [Google Scholar]
  11. Tindall BJ, Ross HNM, Grant WD. Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 1984; 5:41–57 [View Article]
    [Google Scholar]
  12. Cui HL, Yang X, Mou YZ. Salinarchaeum laminariae gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from salted brown alga Laminaria. Extremophiles 2011; 15:625–631 [View Article][PubMed]
    [Google Scholar]
  13. Cui HL, Zhou PJ, Oren A, Liu SJ. Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium . Extremophiles 2009; 13:31–37 [View Article][PubMed]
    [Google Scholar]
  14. Yoon SH, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  15. Kumar S, Nei M, Dudley J, Tamura K. mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008; 9:299–306 [View Article][PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  18. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019 [View Article][PubMed]
    [Google Scholar]
  19. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  21. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 2018; 46:W246–W251 [View Article][PubMed]
    [Google Scholar]
  22. Cheng FY, Gong LY, Zhao DH, Yang HB, Zhou J et al. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon. J Genet Genomics 2017; 44:541–548 [View Article][PubMed]
    [Google Scholar]
  23. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  24. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485 [View Article][PubMed]
    [Google Scholar]
  25. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed]
    [Google Scholar]
  26. Cui HL, Lin ZY, Dong Y, Zhou PJ, Liu SJ. Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 2007; 57:2204–2206 [View Article][PubMed]
    [Google Scholar]
  27. Cui HL, Gao X, Yang X, Xu X-W. Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 2010; 14:493–499 [View Article][PubMed]
    [Google Scholar]
  28. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. Society for Applied Bacteriology Technical 1985
    [Google Scholar]
  29. Sorokin DY, Merkel AY, Messina E, Yakimov MM, Itoh T et al. Reclassification of the genus Natronolimnobius: proposal of two new genera, Natronolimnohabitans gen. nov. to accommodate Natronolimnobius innermongolicus and Natrarchaeobaculum gen. nov. to accommodate Natronolimnobius aegyptiacus and Natronolimnobius sulfurireducens . Int J Syst Evol Microbiol 2020; 70:3399–3405 [View Article][PubMed]
    [Google Scholar]
  30. Itoh T, Yamaguchi T, Zhou P, Takashina T. Natronolimnobius baerhuensis gen. nov., sp. nov. and Natronolimnobius innermongolicus sp. nov., novel haloalkaliphilic archaea isolated from soda lakes in Inner Mongolia, China. Extremophiles 2005; 9:111–116 [View Article][PubMed]
    [Google Scholar]
  31. Tao CQ, Ding Y, Zhao YJ, Cui HL. Natronorubrum halophilum sp. nov. isolated from two inland salt lakes. J Microbiol 2020; 58:105–112 [View Article][PubMed]
    [Google Scholar]
  32. Sorokin DY, Elcheninov AG, Toshchakov SV, Bale NJ, Sinninghe Damsté JS et al. Natrarchaeobius chitinivorans gen. nov., sp. nov., and Natrarchaeobius halalkaliphilus sp. nov., alkaliphilic, chitin-utilizing haloarchaea from hypersaline alkaline lakes. Syst Appl Microbiol 2019; 42:309–318 [View Article][PubMed]
    [Google Scholar]
  33. Castillo AM, Gutiérrez MC, Kamekura M, Xue Y, Ma Y et al. Halostagnicola larsenii gen. nov., sp. nov., an extremely halophilic archaeon from a saline lake in inner Mongolia, China. Int J Syst Evol Microbiol 2006; 56:1519–1524 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004584
Loading
/content/journal/ijsem/10.1099/ijsem.0.004584
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error