1887

Abstract

A Gram-stain-positive, mycelium-forming actinobacterium, YIM 121974 was isolated from an extreme arid soil sample collected at Yuanmou Earth Forest, Yunnan Province, PR China. Classification using a polyphasic approach suggested that strain YIM 121974 belonged to the genus and was closely related to SJ-25 (98.3 %), YIM 56256 (98 %), YIM 61331 (97.9 %), NEAU-7082 (97.9 %), CGMCC 4.3147 (97.7 %), IXS4 (97.6 %) and CPCC 204357 (97.5 %), but could be distinguished from its closest relatives by a combination of phenotypic and phylogenetic features. Average nucleotide identity values of YIM 121974 to its closest phylogenetic neighbours were 70.7–88.9 %, which are lower than the threshold of 95 %. The digital DNA–DNA hybridization values between YIM 121974 and these relative species were 18.0–36.3 %, which are also well below the cut-off value (>70 %) for species delineation. The DNA G+C content of strain YIM 121974 was 72.3 mol% (draft genome sequence). The predominant menaquinone was MK-11. The phospholipids were composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, phosphoglycolipid and glycolipid. The major fatty acid compositions were iso-C, anteiso-C and anteiso-C. The draft genome of isolate YIM 121974 was found to contain 11 secondary metabolite biosynthesis gene clusters by using the antiSMASH server. Based on the above observations, strain YIM 121974 could be distinguished from closely related species belonging to the genus . Thus, strain YIM 121974 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YIM 121974 (=KCTC 39870=DSM 106742).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 32060001)
    • Principle Award Recipient: YiJiang
  • National Major Science and Technology Projects of China (CN) (Award AA18242026)
    • Principle Award Recipient: NotApplicable
  • National Natural Science Foundation of China (Award 31460005)
    • Principle Award Recipient: YiJiang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004580
2020-11-30
2021-10-19
Loading full text...

Full text loading...

References

  1. Labeda DP, Testa RT, Lechevalier MP, Lechevalier HA. Glycomyces, a new genus of the Actinomycetales . Int J Syst Bacteriol 1985; 35:417–421 [View Article]
    [Google Scholar]
  2. Labeda DP, Kroppenstedt RM. Emended description of the genus Glycomyces and description of Glycomyces algeriensis sp. nov., Glycomyces arizonensis sp. nov. and Glycomyces lechevalierae sp. nov. Int J Syst Evol Microbiol 2004; 54:2343–2346 [View Article][PubMed]
    [Google Scholar]
  3. Li W, Liu C, Guo X, Song W, Sun T et al. Glycomyces tritici sp. nov., isolated from rhizosphere soil of wheat (Triticum aestivum L.) and emended description of the genus Glycomyces . Antonie van Leeuwenhoek 2018; 111:1087–1093 [View Article]
    [Google Scholar]
  4. Labeda DP, Kroppenstedt RM. Stackebrandtia nassauensis gen. nov., sp. nov. and emended description of the family Glycomycetaceae . Int J Syst Evol Microbiol 2005; 55:1687–1691 [View Article][PubMed]
    [Google Scholar]
  5. Guan T-W, Tang S-K, Wu J-Y, Zhi X-Y, Xu L-H, JY W, LH X et al. Haloglycomyces albus gen. nov., sp. nov., a halophilic, filamentous actinomycete of the family Glycomycetaceae . Int J Syst Evol Microbiol 2009; 59:1297–1301 [View Article][PubMed]
    [Google Scholar]
  6. Moshtaghi Nikou M, Ramezani M, Ali Amoozegar M, Rasouli M, Abolhassan Shahzadeh Fazeli S et al. Salininema proteolyticum gen. nov., sp. nov., a halophilic rare actinomycete isolated from wetland soil, and emended description of the family Glycomycetaceae . Int J Syst Evol Microbiol 2015; 65:3727–3733 [View Article][PubMed]
    [Google Scholar]
  7. XJ L, Liu J, Wu Y et al. Description of Salilacibacter albus gen. nov. sp. nov. isolated from a dried salt lake, and reclassification of Paraglycomyces xinjiangensis Luo, et al. 2015 as a later heterotypic synonym of Salininema proteolyticum Nikou, et al. 2015 with emended descriptions of the genus Salininema and Salininema proteolyticum . Int Syst Evol Microbiol 2016:2558–2565
    [Google Scholar]
  8. Stackebrandt E, Rainey FA, Ward-rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [View Article]
    [Google Scholar]
  9. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M et al. List of prokaryotic names with standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020 23 Jul 2020 [View Article][PubMed]
    [Google Scholar]
  10. Li W, Liu C, Guo X, Song W, Sun T et al. Glycomyces tritici sp. nov., isolated from rhizosphere soil of wheat (Triticum aestivum L.) and emended description of the genus Glycomyces . Antonie van Leeuwenhoek 2018; 111:1087–1093 [View Article]
    [Google Scholar]
  11. Duan L, Song W, Jiang S, Qian L, Guo X et al. Glycomyces luteolus sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L). Antonie van Leeuwenhoek 2019; 112:703–710 [View Article][PubMed]
    [Google Scholar]
  12. Guan T-W, Xiang H-P, Wang P-H, Tian L, Tang S-K et al. Glycomyces xinjiangensis sp. nov., a novel actinomycete isolated from a hypersaline habitat. Arch Microbiol 2017; 199:1231–1235 [View Article]
    [Google Scholar]
  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  14. Kelly KL. Color-Name Charts Illustrated with Centroid Colors Chicago: Inter-Society Color Council-National Bureau of Standards; 1964
    [Google Scholar]
  15. Krige NR, Padgtt PJ. Phenotypic and physiological characterization methods. In Rainey F, Oren A. (editors) Methods in Microbiology 38 New York: Academic Press; 2011
    [Google Scholar]
  16. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  17. Cerny G. Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. European J Appl Microbiol Biotechnol. 1978; 5:113–122 [View Article]
    [Google Scholar]
  18. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  19. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  20. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  21. Tang S-K, Wang Y, Chen Y, Lou K, Cao L-L et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . Int J Syst Evol Microbiol 2009; 59:2025–2032 [View Article][PubMed]
    [Google Scholar]
  22. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  23. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  24. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  25. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA et al. Practical Streptomyces Genetics Norwich, UK: John Innes Foundation; 2000
    [Google Scholar]
  28. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci U S A 1992; 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 1870; 2016:33
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  33. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  34. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  36. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  37. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article][PubMed]
    [Google Scholar]
  38. Li R, Li Y, Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article][PubMed]
    [Google Scholar]
  39. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  40. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article][PubMed]
    [Google Scholar]
  41. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  42. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  43. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  44. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  46. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article][PubMed]
    [Google Scholar]
  47. Mu S, Sun T, Li Y, Jiang S, Guo X et al. Glycomyces dulcitolivorans sp. nov., isolated from rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2018; 68:3034–3039 [View Article][PubMed]
    [Google Scholar]
  48. Qin S, Chen H-H, Klenk H-P, Zhao G-Z, Li J et al. Glycomyces scopariae sp. nov. and Glycomyces mayteni sp. nov., isolated from medicinal plants in China. Int J Syst Evol Microbiol 2009; 59:1023–1027 [View Article][PubMed]
    [Google Scholar]
  49. Gu Q, Zheng W, Huang Y. Glycomyces sambucus sp. nov., an endophytic actinomycete isolated from the stem of Sambucus adnata wall. Int J Syst Evol Microbiol 2007; 57:1995–1998 [View Article][PubMed]
    [Google Scholar]
  50. Zhang X, Ren K, Du J, Liu H, Zhang L. Glycomyces artemisiae sp. nov., an endophytic actinomycete isolated from the roots of Artemisia argyi . Int J Syst Evol Microbiol 2014; 64:3492–3495 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004580
Loading
/content/journal/ijsem/10.1099/ijsem.0.004580
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error