1887

Abstract

A novel, slightly halophilic bacterium, designated TBZ202, was isolated from water of Urmia Lake, in the Azerbaijan region of north-west Iran. The strain was facultatively anaerobic, Gram-stain-negative, rod-shaped and motile. Colonies were creamy, circular, convex and shiny. It grew at NaCl concentrations of 0–12 % (w/v) (optimum 3–5 % w/v), at temperatures of 20–45 °C (optimum 30 °C) and at pH 5.0–10.0 (optimum pH 7.0). Based on the 16S rRNA gene sequence, strain TBZ202 belongs to the genus in the and the most closely related species are CGMCC 1.6133 (98.6 % similarity), Al12 (96.8 %) and RS-16 (96.6%). The G+C content was 67.9 % and the digital DNA–DNA hybridization and average nucleotide identity values with were 35.8 and 83.8 %, respectively, indicating that the isolate differs from all species described. The major fatty acids were C 7, C and C 7. The only respiratory quinone detected was Q-9 and polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, aminophospholipid and three unknown phospholipids. On the basis of a polyphasic taxonomic analysis, the isolate is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TBZ202 (=KCTC 62817=CECT 9693).

Funding
This study was supported by the:
  • Tabriz University of Medical Sciences (Award IR.TBZMED.VCR.REC.1396.1188)
    • Principle Award Recipient: ElhamKazemi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004578
2020-12-03
2021-10-25
Loading full text...

Full text loading...

References

  1. Franzmann PD, Wehmeyer U, Stackebrandt E. Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya . Syst Appl Microbiol 1988; 11:16–19 [View Article]
    [Google Scholar]
  2. Wang Y, Tang S-K, Lou K, Lee J-C, Jeon CO et al. Aidingimonas halophila gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2009; 59:3088–3094 [View Article][PubMed]
    [Google Scholar]
  3. León MJ, Sánchez-Porro C, de la Haba RR, Llamas I, Ventosa A. Larsenia salina gen. nov., sp. nov., a new member of the family Halomonadaceae based on multilocus sequence analysis. Syst Appl Microbiol 2014; 37:480–487 [View Article][PubMed]
    [Google Scholar]
  4. Arahal DR, Ludwig W, Schleifer KH, Ventosa A. Phylogeny of the family Halomonadaceae based on 23S and 165 rDNA sequence analyses. Int J Syst Evol Microbiol 2002; 52:241–249 [View Article][PubMed]
    [Google Scholar]
  5. García MT, Ventosa A, Mellado E. Catabolic versatility of aromatic compound-degrading halophilic bacteria. FEMS Microbiol Ecol 2005; 54:97–109 [View Article][PubMed]
    [Google Scholar]
  6. Romanenko LA, Tanaka N, Svetashev VI, Falsen E. Description of Cobetia amphilecti sp. nov., Cobetia litoralis sp. nov. and Cobetia pacifica sp. nov., classification of Halomonas halodurans as a later heterotypic synonym of Cobetia marina and emended descriptions of the genus Cobetia and Cobetia marina. Int J Syst Evol Microbiol 2013; 63:288–297 [View Article][PubMed]
    [Google Scholar]
  7. Ntougias S, Zervakis GI, Fasseas C. Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. Int J Syst Evol Microbiol 2007; 57:1975–1983 [View Article][PubMed]
    [Google Scholar]
  8. Sánchez-Porro C, de la Haba RR, Soto-Ramírez N, Márquez MC, Montalvo-Rodríguez R et al. Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov. Int J Syst Evol Microbiol 2009; 59:397–405 [View Article][PubMed]
    [Google Scholar]
  9. Ben Ali Gam Z, Abdelkafi S, Casalot L, Tholozan JL, Oueslati R et al. Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 2007; 57:2307–2313 [View Article][PubMed]
    [Google Scholar]
  10. Maturrano L, Valens-Vadell M, Rosselló-Mora R, Antón J. Salicola marasensis gen. nov., sp. nov., an extremely halophilic bacterium isolated from the Maras solar salterns in Peru. Int J Syst Evol Microbiol 2006; 56:1685–1691 [View Article][PubMed]
    [Google Scholar]
  11. Raju K, Sekar J, Vaiyapuri Ramalingam P, Ramalingam PV. Salinicola rhizosphaerae sp. nov., isolated from the rhizosphere of the mangrove Avicennia marina L. Int J Syst Evol Microbiol 2016; 66:1074–1079 [View Article][PubMed]
    [Google Scholar]
  12. Vreeland RH, Litchfield C, Martin E, Elliot E, elongata H. A new genus and species of extremely salt-tolerant bacteria. Int J Syst Evol Microbiol 1980; 30:485–495
    [Google Scholar]
  13. Lefevre E, Round LA. A preliminary report upon some halophilic bacteria. J Bacteriol 1919; 4:177–182 [View Article][PubMed]
    [Google Scholar]
  14. Kharroub K, Jiménez-Pranteda ML, Aguilera M, Boulahrouf A, Ramos-Cormenzana A et al. Halomonas sabkhae sp. nov., a moderately halophilic bacterium isolated from an Algerian sabkha. Int J Syst Evol Microbiol 2008; 58:40–44 [View Article][PubMed]
    [Google Scholar]
  15. Guan T-W, Xiao J, Zhao K, Luo X-X, Zhang X-P et al. Halomonas xinjiangensis sp. nov., a halotolerant bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2010; 60:349–352 [View Article][PubMed]
    [Google Scholar]
  16. Zhao B, Wang H, Mao X, Li R, Zhang Y-J et al. Halomonas xianhensis sp. nov., a moderately halophilic bacterium isolated from a saline soil contaminated with crude oil. Int J Syst Evol Microbiol 2012; 62:173–178 [View Article][PubMed]
    [Google Scholar]
  17. Ollivier B, Caumette P, Garcia JL, Mah RA. Anaerobic bacteria from hypersaline environments. Microbiol Rev 1994; 58:27–38 [View Article][PubMed]
    [Google Scholar]
  18. Jung WY, Lee HJ, Jeon CO. Halomonas garicola sp. nov., isolated from saeu-jeot, a Korean salted and fermented shrimp sauce. Int J Syst Evol Microbiol 2016; 66:731–737 [View Article][PubMed]
    [Google Scholar]
  19. Lee J-C, Kim S-J, Whang K-S. Halomonas sediminicola sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment. Int J Syst Evol Microbiol 2016; 66:3865–3872 [View Article][PubMed]
    [Google Scholar]
  20. Xu XW, Wu YH, Zhou Z, Wang CS, Zhou YG et al. Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 2007; 57:1619–1624 [View Article][PubMed]
    [Google Scholar]
  21. Vahed SZ, Forouhandeh H, Tarhriz V, Chaparzadeh N, Hejazi MA et al. Halomonas tabrizica sp. nov., a novel moderately halophilic bacterium isolated from Urmia Lake in Iran. Antonie van Leeuwenhoek 2018; 111:1139–1148 [View Article][PubMed]
    [Google Scholar]
  22. Romanenko LA, Schumann P, Rohde M, Mikhailov VV, Stackebrandt E. Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium. Int J Syst Evol Microbiol 2002; 52:1767–1772 [View Article][PubMed]
    [Google Scholar]
  23. Kim KK, Jin L, Yang HC, Lee ST. Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. Int J Syst Evol Microbiol 2007; 57:675–681 [View Article][PubMed]
    [Google Scholar]
  24. Wang YX, Xiao W, Dong MH, Zhao Q, Li ZY et al. Halomonas qiaohouensis sp. nov., isolated from salt mine soil in southwest China. Antonie Van Leeuwenhoek 2014; 106:253–260 [View Article][PubMed]
    [Google Scholar]
  25. Kaye JZ, Sylvan JB, Edwards KJ, Baross JA. Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments. FEMS Microbiol Ecol 2011; 75:123–133 [View Article][PubMed]
    [Google Scholar]
  26. Dziewit L, Pyzik A, Matlakowska R, Baj J, Szuplewska M et al. Characterization of Halomonas sp. ZM3 isolated from the Zelazny Most post-flotation waste reservoir, with a special focus on its mobile DNA. BMC Microbiol 2013; 13:59 [View Article][PubMed]
    [Google Scholar]
  27. Heyrman J, Balcaen A, De Vos P, Swings J. Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint-Catherine chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol 2002; 52:2049–2054 [View Article][PubMed]
    [Google Scholar]
  28. Wang YN, Cai H, Yu SL, Wang ZY, Liu J et al. Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 2007; 57:911–915 [View Article][PubMed]
    [Google Scholar]
  29. Jiang J, Pan Y, Hu S, Zhang X, Hu B et al. Halomonas songnenensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soils. Int J Syst Evol Microbiol 2014; 64:1662–1669 [View Article][PubMed]
    [Google Scholar]
  30. Eimanifar A, Mohebbi F, Lake U. Northwest Iran): a brief review. Saline Syst 2007; 3:5
    [Google Scholar]
  31. Alipour S. Hydrogeochemistry of seasonal variation of Urmia salt lake, Iran. Saline Syst 2006; 2:9 [View Article][PubMed]
    [Google Scholar]
  32. von Abich WH. One and a half centuries of physicochemical data of Urmia lake, Iran: 1852-2008. Int J Science & Knowledge; Vol 2013; 2:57–72
    [Google Scholar]
  33. Hamidi-Razi H, Mazaheri M, Carvajalino-Fernández M, Vali-Samani J. Investigating the restoration of Lake Urmia using a numerical modelling approach. J Great Lakes Res 2019; 45:87–97 [View Article]
    [Google Scholar]
  34. Eguchi M, Nishikawa T, Macdonald K, Cavicchioli R, Gottschal JC et al. Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 1996; 62:1287–1294 [View Article]
    [Google Scholar]
  35. Gerhardt P, Murray R, Wood W, Krieg N. Stackebrandt E, Goebel BM. (editors) Methods for General and Molecular Bacteriology 607654 Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  36. Krieg NR, Padgett PJ. Phenotypic and Physiological Characterization Methods Methods microbiol: Elsevier; 2011 pp 15–60
    [Google Scholar]
  37. Mac Faddin JF. Biochemical Tests for Identification of Medical Bacteria Williams & Wilkins Co; 1976
    [Google Scholar]
  38. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [View Article]
    [Google Scholar]
  39. Stanier RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads a taxonomic study. J Gen Microbiol 1966; 43:159–271 [View Article]
    [Google Scholar]
  40. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ et al. Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 2007; 57:2436–2446 [View Article]
    [Google Scholar]
  41. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  42. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  43. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article]
    [Google Scholar]
  44. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  45. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI technical note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  46. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol 1983; 54:31–36 [View Article]
    [Google Scholar]
  47. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article]
    [Google Scholar]
  48. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  49. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  50. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Methods for General and Molecular Microbiology, Third Edition . American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  51. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article]
    [Google Scholar]
  52. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  53. Stackebrandt E, Goodfellow M. Nucleic Acid Techniques in Bacterial Systematics Wiley; 1991
    [Google Scholar]
  54. Chun J, Lee J-H, Jung Y, Kim M, Kim S et al. Eztaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57:2259–2261 [View Article]
    [Google Scholar]
  55. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article]
    [Google Scholar]
  56. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  57. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees; 1992
  58. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526
    [Google Scholar]
  59. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  60. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:1–10 [View Article]
    [Google Scholar]
  61. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  62. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  63. Yoon SH, SM H, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 11:1281–1286
    [Google Scholar]
  64. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75–15 [View Article]
    [Google Scholar]
  65. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  66. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast Distance-Based phylogeny inference program: table 1. Mol Biol Evol 2015; 32:2798–2800 [View Article]
    [Google Scholar]
  67. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  68. Wang YN, Cai H, Chi CQ, Lu AH, Lin XG et al. Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 2007; 57:1222–1226 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004578
Loading
/content/journal/ijsem/10.1099/ijsem.0.004578
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error