1887

Abstract

A novel mesophilic, hydrogen- and sulfur-oxidizing bacterium, designated strain NW8N, was collected from a sulfide chimney at the deep-sea hydrothermal vent on the Carlsberg Ridge of the Northwest Indian Ocean. The cells were Gram-stain-negative, motile, short rods with a single polar flagellum. The temperature, pH and salinity ranges for growth of strain NW8N were 4–40 °C (optimum, 33 °C), pH 4.5–7.5 (optimum, pH 5.5) and 340–680 mM NaCl (optimum, 510 mM). The isolate was an obligate chemolithoautotroph capable of growth using hydrogen, thiosulfate, sulfide or elemental sulphur as the sole energy source, carbon dioxide as the sole carbon source and molecular oxygen as the sole electron acceptor. The major cellular fatty acids of strain NW8N were summed feature 3 (C 7 and/or C 6), C and summed feature 8 (C 7 and/or C 6). The total size of its genome was 2 093 492 bp and the genomic DNA G+C content was 36.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and core genes showed that the novel isolate belonged to the genus and was most closely related to GO25 (97.4 % sequence identity). The average nucleotide identity and DNA–DNAhybridization values between strain NW8N and GO25 was 77.8 and 21.1 %, respectively. Based on the phylogenetic, genomic and phenotypic data presented here, strain NW8N represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain NW8N (=MCCC 1A13988=KTCC 15780).

Funding
This study was supported by the:
  • QitaoHu , China Ocean Mineral Resources Research and Development Association , (Award DY135-B2-01)
  • NotApplicable , National Natural Science Foundation of China , (Award 41672333)
  • NotApplicable , National Key Research and Development Project , (Award 2018YFC0310701)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004575
2020-12-02
2021-02-26
Loading full text...

Full text loading...

References

  1. Zhang Y, Zhao Z, Chen C-TA, Tang K, Su J et al. Sulfur metabolizing microbes dominate microbial communities in andesite-hosted shallow-sea hydrothermal systems. PLoS One 2012; 7:e44593 [CrossRef][PubMed]
    [Google Scholar]
  2. Niemann H, Linke P, Knittel K, MacPherson E, Boetius A et al. Methane-carbon flow into the benthic food web at cold seeps-a case study from the Costa Rica subduction zone. PLoS One 2013; 8:e74894 [CrossRef][PubMed]
    [Google Scholar]
  3. Grote J, Labrenz M, Pfeiffer B, Jost G, Jürgens K. Quantitative distributions of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxclines of the central Baltic Sea. Appl Environ Microbiol 2007; 73:7155–7161 [CrossRef][PubMed]
    [Google Scholar]
  4. Grote J, Schott T, Bruckner CG, Glöckner FO, Jost G et al. Genome and physiology of a model epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. Proc Natl Acad Sci USA 2012; 109:506–510 [CrossRef][PubMed]
    [Google Scholar]
  5. Sievert SM, Scott KM, Klotz MG, Chain PSG, Hauser LJ et al. Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans . Appl Environ Microbiol 2008b; 74:1145–1156 [CrossRef][PubMed]
    [Google Scholar]
  6. Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 2003; 53:1801–1805 [CrossRef][PubMed]
    [Google Scholar]
  7. Takai K, Suzuki M, Nakagawa S, Miyazaki M, Suzuki Y et al. Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas . Int J Syst Evol Microbiol 2006; 56:1725–1733 [CrossRef][PubMed]
    [Google Scholar]
  8. Hoor TTA. A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Net J Sea Res 1975; 9:344–350 [CrossRef]
    [Google Scholar]
  9. Cai L, Shao M-F, Zhang T. Non-contiguous finished genome sequence and description of Sulfurimonas hongkongensis sp. nov., a strictly anaerobic denitrifying, hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from marine sediment. Stand Genomic Sci 2014; 9:1302–1310 [CrossRef][PubMed]
    [Google Scholar]
  10. Wang SS, Jiang LJ, Liu XW, Yang SP, Shao ZZ. Sulfurimonas xiamenensis sp. nov. and Sulfurimonas lithotrophica sp. nov., hydrogen- and sulfur-oxidizing chemolithoautotrophs within the Epsilonproteobacteria isolated from coastal sediments, and an emended description of the genus Sulfurimonas . Int J Syst Evol Microbiol 2020
    [Google Scholar]
  11. Labrenz M, Grote J, Mammitzsch K, Boschker HTS, Laue M et al. Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic redoxcline, and an emended description of the genus Sulfurimonas . Int J Syst Evol Microbiol 2013; 63:4141–4148 [CrossRef][PubMed]
    [Google Scholar]
  12. Ratnikova NM, Slobodkin AI, Merkel AY, Kopitsyn DS, Kevbrin VV et al. Sulfurimonas crateris sp. nov., a facultative anaerobic sulfur-oxidizing chemolithoautotrophic bacterium isolated from a terrestrial mud volcano. Int J Syst Evol Microbiol 2019
    [Google Scholar]
  13. Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T et al. Isolation and phylogenetic diversity of members of previously uncultivated epsilon-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 2003; 218:167–174 [CrossRef][PubMed]
    [Google Scholar]
  14. Jiang L, Lyu J, Shao Z. Sulfur metabolism of Hydrogenovibrio thermophilus strain S5 and its adaptations to deep-sea hydrothermal vent environment. Front Microbiol 2017; 8:2513 [CrossRef][PubMed]
    [Google Scholar]
  15. Jiang LJ, Zheng YP, Peng XT, Zhou HY, Zhang CL et al. Vertical distribution and diversity of sulfate-reducing prokaryotes in the pearl river estuarine sediments, southern China. Fems Microbiol Ecol 2010; 70:93–106
    [Google Scholar]
  16. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  17. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped blast and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  21. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [CrossRef][PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  27. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  28. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [CrossRef][PubMed]
    [Google Scholar]
  29. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  30. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [CrossRef][PubMed]
    [Google Scholar]
  31. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004575
Loading
/content/journal/ijsem/10.1099/ijsem.0.004575
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error