1887

Abstract

Five strains, VB23, VB24, VB25, VB26 and VB31, were isolated from chimpanzee (), cotton-top tamarin (), Goeldi’s marmoset (), moustached tamarin () and patas monkey (), respectively, which were kept in two Czech zoos. These strains were isolated from faecal samples and were Gram-positive, non-motile, non-sporulating, anaerobic and fructose-6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA revealed close relatedness between VB23 and LMG 11039 (96.0 %), VB24 and subsp. DSM 20433 (96.1 %), VB25 and LMG 30939 (96.5 %), VB26 and LMG 30297 (98.1 %), and VB31 and . LMG 11039 (99.40 %). Internal transcribed spacer profiling revealed that VB23, VB24, VB25, VB26 and VB31 had highest similarity to LMG 13208 (77.2 %), subsp. ATCC 15697 (85.8 %), DSM 23969 (76.9 %), LMG 13208 (81.2 %) and LMG 11039 (88.2 %), respectively. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) analyses with their closest neighbours supported the independent phylogenetic positions of the strains with values between 86.3 and 94.3 % for ANI and 25.8 and 54.9 % for dDDH. These genomic and phylogenetic analyses suggested that the evaluated strains were novel species named sp. nov. (VB31=DSM 109960=CCUG 73843), sp. nov. (VB25=DSM 109958=CCUG 73842), sp. nov. (VB24=DSM 109957=CCUG 73932), sp. nov. (VB26=DSM 109959=CCUG 73845) and sp. nov. (VB23=DSM 109963=CCUG 73840).

Funding
This study was supported by the:
  • MŠMT ČR (Award No. CZ.02.1.01/0.0/0.0/16_019/0000845))
    • Principle Award Recipient: Not Applicable
  • MŠMT ČR (Award 8J19AT028)
    • Principle Award Recipient: Vera Neuzil-Bunesova
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004573
2020-11-23
2021-07-29
Loading full text...

Full text loading...

References

  1. Biavati B, Mattarelli P, Genus I et al. Bifidobacterium Orla-Jensen 1924, 472AL. In De Vos P, Garrity GM, Jones D, Krieg N, Ludwig W et al. (editors) Bergeys Manual of Systematic Bacteriology The Firmicutes; 2012
    [Google Scholar]
  2. Bunesova V, Vlkova E, Rada V, Killer J, Musilova S. Bifidobacteria from the gastrointestinal tract of animals: differences and similarities. Benef Microbes 2014; 5:377–388 [View Article][PubMed]
    [Google Scholar]
  3. Lugli GA, Duranti S, Albert K, Mancabelli L, Napoli S et al. Unveiling genomic diversity among members of the Species Bifidobacterium pseudolongum, a widely distributed gut commensal of the animal kingdom. Appl Environ Microbiol 2019; 85:AEM.03065–18 [View Article][PubMed]
    [Google Scholar]
  4. Endo A, Futagawa-Endo Y, Schumann P, Pukall R, Dicks LMT. Bifidobacterium reuteri sp. nov., Bifidobacterium callitrichos sp. nov., Bifidobacterium saguini sp. nov., Bifidobacterium stellenboschense sp. nov. and Bifidobacterium biavatii sp. nov. isolated from faeces of common marmoset (Callithrix jacchus) and red-handed tamarin (Saguinus midas). Syst Appl Microbiol 2012; 35:92–97 [View Article][PubMed]
    [Google Scholar]
  5. Lugli GA, Mangifesta M, Duranti S, Anzalone R, Milani C et al. Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov. Syst Appl Microbiol 2018; 41:173–183 [View Article][PubMed]
    [Google Scholar]
  6. Michelini S, Modesto M, Filippini G, Spiezio C, Sandri C et al. Bifidobacterium aerophilum sp. nov., Bifidobacterium avesanii sp. nov. and Bifidobacterium ramosum sp. nov.: three novel taxa from the faeces of cotton-top tamarin (Saguinus oedipus L.). Syst Appl Microbiol 2016; 39:229–236 [View Article][PubMed]
    [Google Scholar]
  7. Modesto M, Puglisi E, Bonetti A, Michelini S, Spiezio C et al. Bifidobacterium primatium sp. nov., Bifidobacterium scaligerum sp. nov., Bifidobacterium felsineum sp. nov. and Bifidobacterium simiarum sp. nov.: four novel taxa isolated from the faeces of the cotton top tamarin (Saguinus oedipus) and the emperor tamarin (Saguinus imperator). Syst Appl Microbiol 2018; 41:593–603 [View Article][PubMed]
    [Google Scholar]
  8. Michelini S, Oki K, Yanokura E, Shimakawa Y, Modesto M et al. Bifidobacterium myosotis sp. nov., Bifidobacterium tissieri sp. nov. and Bifidobacterium hapali sp. nov., isolated from faeces of baby common marmosets (Callithrix jacchus L.). Int J Syst Evol Microbiol 2016; 66:255–265 [View Article][PubMed]
    [Google Scholar]
  9. Duranti S, Mangifesta M, Lugli GA, Turroni F, Anzalone R et al. Bifidobacterium vansinderenii sp. nov., isolated from faeces of emperor tamarin (Saguinus imperator). Int J Syst Evol Microbiol 2017; 67:3987–3995 [View Article][PubMed]
    [Google Scholar]
  10. Modesto M, Michelini S, Sansosti MC, De Filippo C, Cavalieri D et al. Bifidobacterium callitrichidarum sp. nov. from the faeces of the emperor tamarin (Saguinus imperator). Int J Syst Evol Microbiol 2018; 68:141–148 [View Article][PubMed]
    [Google Scholar]
  11. Modesto M, Michelini S, Oki K, Biavati B, Watanabe K et al. Bifidobacterium catulorum sp. nov., a novel taxon from the faeces of the baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol 2018; 68:575–581 [View Article][PubMed]
    [Google Scholar]
  12. Duranti S, Lugli GA, Napoli S, Anzalone R, Milani C et al. Characterization of the phylogenetic diversity of five novel species belonging to the genus Bifidobacterium: Bifidobacterium castoris sp. nov., Bifidobacterium callimiconis sp. nov., Bifidobacterium goeldii sp. nov., Bifidobacterium samirii sp. nov. and Bifidobacterium dolichotidis sp. nov. Int J Syst Evol Microbiol 2019; 69:1288–1298 [View Article][PubMed]
    [Google Scholar]
  13. Tsuchida S, Takahashi S, Nguema PPM, Fujita S, Kitahara M et al. Bifidobacterium moukalabense sp. nov., isolated from the faeces of wild West lowland gorilla (Gorilla gorilla gorilla). Int J Syst Evol Microbiol 2014; 64:449–455 [View Article]
    [Google Scholar]
  14. Nomoto R, Takano S, Tanaka K, Tsujikawa Y, Kusunoki H et al. Isolation and identification of Bifidobacterium species from feces of captive chimpanzees. Biosci Microbiota Food Health 2017; 36:91–99 [View Article][PubMed]
    [Google Scholar]
  15. Ushida K, Uwatoko Y, Adachi Y, Soumah AG, Matsuzawa T. Isolation of bifidobacteria from feces of chimpanzees in the wild. J Gen Appl Microbiol 2010; 56:57–60 [View Article][PubMed]
    [Google Scholar]
  16. Modrackova N, Makovska M, Mekadim C, Vlkova E, Tejnecky V et al. Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. Bioactive Carbohydrates and Dietary Fibre 2019; 20:100199 [View Article]
    [Google Scholar]
  17. Vlková E, Salmonová H, Bunešová V, Geigerová M, Rada V et al. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria. Anaerobe 2015; 34:27–33 [View Article][PubMed]
    [Google Scholar]
  18. Orban JI, Patterson JA. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J Microbiol Methods 2000; 40:221–224 [View Article][PubMed]
    [Google Scholar]
  19. Kim BJ, Kim HY, Yun YJ, Kim BJ, Kook YH. Differentiation of Bifidobacterium species using partial RNA polymerase {beta}-subunit (rpoB) gene sequences. Int J Syst Evol Microbiol 2010; 60:2697–2704 [View Article][PubMed]
    [Google Scholar]
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  21. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  22. Milani C, Lugli GA, Turroni F, Mancabelli L, Duranti S et al. Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (its) protocol. FEMS Microbiol Ecol 2014; 90:493–503 [View Article][PubMed]
    [Google Scholar]
  23. Lugli GA, Milani C, Mancabelli L, van Sinderen D, Ventura M. MEGAnnotator: a user-friendly pipeline for microbial genomes assembly and annotation. FEMS Microbiol Lett 2016; 363:fnw049 [View Article][PubMed]
    [Google Scholar]
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  25. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  26. Zhao Y, Tang H, Ye Y. RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics 2012; 28:125–126 [View Article][PubMed]
    [Google Scholar]
  27. Chan PP, Lowe TM. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol 2019; 1962:1–14 p [View Article][PubMed]
    [Google Scholar]
  28. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  30. Lugli GA, Milani C, Duranti S, Mancabelli L, Mangifesta M et al. Tracking the taxonomy of the genus Bifidobacterium based on a phylogenomic approach. Appl Environ Microbiol 2018; 84:e02249–17 [View Article][PubMed]
    [Google Scholar]
  31. Lugli GA, Milani C, Turroni F, Duranti S, Ferrario C et al. Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl Environ Microbiol 2014; 80:6383–6394 [View Article][PubMed]
    [Google Scholar]
  32. Lugli GA, Milani C, Turroni F, Duranti S, Mancabelli L et al. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genomics 2017; 18:568 [View Article][PubMed]
    [Google Scholar]
  33. Zhao Y, Wu J, Yang J, Sun S, Xiao J et al. PGAP: pan-genomes analysis pipeline. Bioinformatics 2012; 28:416–418 [View Article][PubMed]
    [Google Scholar]
  34. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002; 30:1575–1584 [View Article][PubMed]
    [Google Scholar]
  35. Katoh K, Misawa K, Kuma K-ichi, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article][PubMed]
    [Google Scholar]
  36. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 2003; 31:3497–3500 [View Article][PubMed]
    [Google Scholar]
  37. Lugli GA, Milani C, Duranti S, Alessandri G, Turroni F et al. Isolation of novel gut bifidobacteria using a combination of metagenomic and cultivation approaches. Genome Biol 2019; 20:96 [View Article][PubMed]
    [Google Scholar]
  38. Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L et al. Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol 2016; 82:980–991 [View Article][PubMed]
    [Google Scholar]
  39. Bottacini F, van Sinderen D, Ventura M. Omics of bifidobacteria: research and insights into their health-promoting activities. Biochem J 2017; 474:4137–4152 [View Article][PubMed]
    [Google Scholar]
  40. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article][PubMed]
    [Google Scholar]
  41. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  42. Morita H, Nakano A, Onoda H, Toh H, Oshima K et al. Bifidobacterium kashiwanohense sp. nov., isolated from healthy infant faeces. Int J Syst Evol Microbiol 2011; 61:2610–2615 [View Article][PubMed]
    [Google Scholar]
  43. Tsuchida S, Takahashi S, Nguema PP, Fujita S, Kitahara M et al. Bifidobacterium moukalabense sp. nov., isolated from the faeces of wild West lowland gorilla (Gorilla gorilla gorilla). Int J Syst Evol Microbiol 2014; 64:449–455 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004573
Loading
/content/journal/ijsem/10.1099/ijsem.0.004573
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error