1887

Abstract

A phylogenomic analysis based on 107 single-copy core genes revealed that three strains from sugar-rich environments, i.e. LMG 1728, LMG 1731 and LMG 22058, represented a single, novel lineage with as nearest validly named neighbour. OrthoANIu and digital DNA–DNA hybridization analyses among these strains and type strains confirmed that the three strains represented a novel species. Biochemical characteristics and MALDI-TOF mass spectra allowed differentiation of this novel species from the type strains of and other closely related species. We therefore propose to classify strains LMG 1728, LMG 1731 and LMG 22058 in the novel species sp. nov., with LMG 1728 (=CECT 30142) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004569
2020-12-22
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/1/ijsem004569.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004569&mimeType=html&fmt=ahah

References

  1. Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G et al. Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 2010; 76:6963–6970 [View Article][PubMed]
    [Google Scholar]
  2. De Roos J, De Vuyst L. Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol 2018; 49:115–119 [View Article][PubMed]
    [Google Scholar]
  3. Kersters K, Lisdiyanti P, Komagata K, Swings J. The family acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia . In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. (editors) The Prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses New York, NY: Springer New York; 2006 pp 163–200
    [Google Scholar]
  4. Yukphan P, Malimas T, Muramatsu Y, Takahashi M, Kaneyasu M et al. Ameyamaea chiangmaiensis gen. nov., sp. nov., an acetic acid bacterium in the α -Proteobacteria . Biosci Biotech Bioch 2009; 73:2156–2162 [View Article]
    [Google Scholar]
  5. Cleenwerck I, De Wachter M, González A, De Vuyst L, De Vos P. Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting: Gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii . Int J Syst Evol Microbiol 2009; 59:1771–1786 [View Article][PubMed]
    [Google Scholar]
  6. Nishijima M, Tazato N, Handa Y, Tomita J, Kigawa R et al. Gluconacetobacter tumulisoli sp. nov., Gluconacetobacter takamatsuzukensis sp. nov. and Gluconacetobacter aggeris sp. nov., isolated from Takamatsuzuka Tumulus samples before and during the dismantling work in 2007. Int J Syst Evol Microbiol 2013; 63:3981–3988 [View Article][PubMed]
    [Google Scholar]
  7. Tazato N, Nishijima M, Handa Y, Kigawa R, Sano C et al. Gluconacetobacter tumulicola sp. nov. and Gluconacetobacter asukensis sp. nov., isolated from the stone chamber interior of the Kitora Tumulus. Int J Syst Evol Microbiol 2012; 62:2032–2038 [View Article][PubMed]
    [Google Scholar]
  8. Yamada Y, Hoshino K, Ishikawa T. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 1997; 61:1244–1251 [View Article][PubMed]
    [Google Scholar]
  9. Yamada Y, Kondo K. Gluconoacetobacter, a new subgenus comprising the acetate-oxidizing acetic acid bacteria with ubiquinone-10 in the genus Acetobacter . J Gen Appl Microbiol 1984; 30:297–303 [View Article]
    [Google Scholar]
  10. LPSN List of prokaryotic names with standing in Nomenclature (bacterio.net). (Access date: 284 05/08/2020). Available from https://lpsn.dsmz.de/genus/gluconacetobacter ; 2020
  11. Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D et al. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 2012; 58:397–404 [View Article][PubMed]
    [Google Scholar]
  12. Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D et al. Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. Ann Microbiol 2012; 62:849–859 [View Article]
    [Google Scholar]
  13. LPSN List of prokaryotic names with standing in Nomenclature (bacterio.net). (Access date: 293 05/08/2020). Available from https://lpsn.dsmz.de/species/gluconacetobacter-entanii ; 2020
  14. Cho JJ, Hayward AC, Rohrbach KG. Nutritional requirements and biochemical activities of pineapple pink disease bacterial strains from Hawaii. Antonie van Leeuwenhoek 1980; 46:191–204 [View Article][PubMed]
    [Google Scholar]
  15. Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM et al. Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Evol Microbiol 1989; 39:361–364
    [Google Scholar]
  16. Gosselé F, Swings J, Kersters K, Pauwels P, De Ley J. Numerical analysis of phenotypic features and protein gel Electrophoregrams of a wide variety of Acetobacter strains. proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898, 215. Syst Appl Microbiol 1983; 4:338–368 [View Article][PubMed]
    [Google Scholar]
  17. Alauzet C, Teyssier C, Jumas-Bilak E, Gouby A, Chiron R et al. Gluconobacter as well as Asaia species, newly emerging opportunistic human pathogens among acetic acid bacteria. J Clin Microbiol 2010; 48:3935–3942 [View Article][PubMed]
    [Google Scholar]
  18. Huang CH, Chang MT, Huang L, Chua WS. Molecular discrimination and identification of Acetobacter genus based on the partial heat shock protein 60 gene (hsp60) sequences. J Sci Food Agric 2014; 94:213–218 [View Article][PubMed]
    [Google Scholar]
  19. Kommanee J, Akaracharanya A, Tanasupawat S, Malimas T, Yukphan P et al. Identification of Gluconobacter strains isolated in Thailand based on 16S–23S rRNA gene its restriction and 16S rRNA gene sequence analyses. Ann Microbiol 2008; 58:741–747 [View Article]
    [Google Scholar]
  20. Li L, Praet J, Borremans W, Nunes OC, Manaia CM et al. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int J Syst Evol Microbiol 2015; 65:267–273 [View Article][PubMed]
    [Google Scholar]
  21. Spitaels F, Li L, Wieme A, Balzarini T, Cleenwerck I et al. Acetobacter lambici sp. nov., isolated from fermenting lambic beer. Int J Syst Evol Microbiol 2014; 64:1083–1089 [View Article][PubMed]
    [Google Scholar]
  22. Spitaels F, Wieme A, Balzarini T, Cleenwerck I, Van Landschoot A et al. Gluconobacter cerevisiae sp. nov., isolated from the brewery environment. Int J Syst Evol Microbiol 2014; 64:1134–1141 [View Article][PubMed]
    [Google Scholar]
  23. Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A et al. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int J Food Microbiol 2014; 185:41–50 [View Article][PubMed]
    [Google Scholar]
  24. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article][PubMed]
    [Google Scholar]
  25. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  26. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  27. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  28. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  29. Li L, Cleenwerck I, De Vuyst L, Vandamme P. Identification of acetic acid bacteria through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and report of Gluconobacter nephelii Kommanee et al. 2011 and Gluconobacter uchimurae Tanasupawat et al. 2012 as later heterotypic synonyms of Gluconobacter japonicus Malimas et al. 2009 and Gluconobacter oxydans (Henneberg 1897) de Ley 1961 (Approved Lists 1980) emend. Gosselé et al. 1983, respectively. Syst Appl Microbiol 2017; 40:123–134 [View Article][PubMed]
    [Google Scholar]
  30. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  32. Ankenbrand MJ, Keller A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016; 59:783–791 [View Article][PubMed]
    [Google Scholar]
  33. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  35. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  37. Franke IH, Fegan M, Hayward C, Leonard G, Stackebrandt E et al. Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 1999; 49:1681–1693 [View Article][PubMed]
    [Google Scholar]
  38. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002; 52:1551–1558 [View Article][PubMed]
    [Google Scholar]
  39. Asai T, Iizuka H, Komagata K. The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 1964; 10:95–126 [View Article]
    [Google Scholar]
  40. Gosselé F, Swings J, De Ley J. A rapid, simple and simultaneous detection of 2-keto-, 5-keto-and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. Zentralblatt für Bakteriologie: I Abt Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 1980; 1:178–181 [View Article]
    [Google Scholar]
  41. Lambert B, Kersters K, Gosselé F, Swings J, De Ley J. Gluconobacters from honey bees. Antonie van Leeuwenhoek 1981; 47:147–157 [View Article][PubMed]
    [Google Scholar]
  42. Swings J. Phenotypic identification of acetic acid bacteria. Identification Methods in Applied and Environmental Microbiology (The Society for Applied Bacteriology Technical Series no 29) 1992 pp 103–110
    [Google Scholar]
  43. Dumolin C, Aerts M, Verheyde B, Schellaert S, Vandamme T et al. Introducing SPeDE: high-throughput Dereplication and accurate determination of microbial diversity from matrix-assisted laser desorption-ionization time of flight mass spectrometry data. mSystems 2019; 4:e00437–00419 [View Article][PubMed]
    [Google Scholar]
  44. Strohalm M, Kavan D, Novák P, Volný M, Havlícek V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 2010; 82:4648–4651 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004569
Loading
/content/journal/ijsem/10.1099/ijsem.0.004569
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error