1887

Abstract

Two new species have been isolated from cold shallow sandy sediments of the extreme Southern Chilean coasts: sp. nov., from a low-salinity site at Puerto Natales on the Pacific coast, and sp. nov., from a marine site at Punta Arenas on the Atlantic coast. has a medium body size (53×36 µm ), a dorsal surface marked by six prominent ridges, a double dargyrome, six dorsal and two ventrolateral kineties, a buccal field extending to about 3/4 of the body length, an adoral zone composed of 28–32 membranelles, and nine fronto-ventral, five transverse and two or three caudal cirri. The bulky, hook-, horseshoe- or 3-shaped macronucleus is associated with one sub-spherical micronucleus. The central body region hosts taxonomically unidentified endosymbiotic eubacteria. has a small body size (39×27 µm ), a smooth dorsal surface marked by three deep grooves, a double dargyrome, four dorsal and two ventrolateral kineties, a buccal field extending to about 2/3 of the body length, an adoral zone composed of 23–25 adoral membranelles, and nine fronto-ventral, five transverse and three caudal cirri. The macronucleus is hook- or C-shaped and associated with one spherical micronucleus. Endosymbiotic bacteria belonging to the genus reside preferentially in the anterior cell region. Both species lack the fronto-ventral cirrus numbered ‘V/2’, whereby their cirrotype-9 conforms to the so-called ‘pattern I’, which is the basic distinctive trait of the genus Borror and Hill, 1995. Phylogenetic analyses of small subunit rRNA gene sequences, however, classify into its own early branching clade and into a late branching clade. This indicates a polyphyletic nature and taxonomic inconsistency of the genus , which was erected to include species with cirrotype-9 pattern I.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004568
2020-11-17
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/1/ijsem004568.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004568&mimeType=html&fmt=ahah

References

  1. Curds CR. A guide to the species of the genus Euplotes (Hypotrichida, Ciliatea). Bull Br Mus (Nat Hist) Zool 1975; 28:1–61
    [Google Scholar]
  2. Berger H. Bibliography of Hypotrichs and Euplotids (Ciliophora). Verlag Salzburg, Austria: Helmut Berger; 2006
    [Google Scholar]
  3. Di Giuseppe G, Barbieri M, Vallesi A, Luporini P, Dini F. Phylogeographical pattern of Euplotes nobilii, a protist ciliate with a bipolar biogeographical distribution. Mol Ecol 2013; 22:4029–4037 [View Article][PubMed]
    [Google Scholar]
  4. Di Giuseppe G, Erra F, Frontini F, Dini F, Vallesi A et al. Improved description of the bipolar ciliate, Euplotes petzi, and definition of its basal position in the Euplotes phylogenetic tree. Eur J Protistol 2014; 50:402–411 [View Article][PubMed]
    [Google Scholar]
  5. Di Giuseppe G, Erra F, Dini F, Alimenti C, Vallesi A et al. Antarctic and Arctic populations of the ciliate Euplotes nobilii show common pheromone-mediated cell-cell signaling and cross-mating. Proc Natl Acad Sci USA 2011; 108:3181–3186 [View Article][PubMed]
    [Google Scholar]
  6. Di Giuseppe G, Dini F, Vallesi A, Luporini P. Genetic relationships in bipolar species of the protist ciliate, Euplotes . Hydrobiologia 2015; 761:71–83 [View Article]
    [Google Scholar]
  7. Di Giseppe G, Dini F, Vallesi SA, Luporini P. Euplotes (Dorsoventrally Flattened Ciliates) John Wiley & Sons, Ltd; 2015
    [Google Scholar]
  8. Nanney DL. Experimental Ciliatology New York: Wiley and Sons; 1980
    [Google Scholar]
  9. Gates MA. Morphometric variation in the hypotrich ciliate genus Euplotes . J Protozool 1978; 25:338–350
    [Google Scholar]
  10. Hufnagel LA, Torch R. Intraclonal dimorphism of caudal cirri in Euplotes vannus: cortical determination. J Protozool 1967; 14:429–439 [View Article][PubMed]
    [Google Scholar]
  11. Gates MA. Analysis of positional information applied to cirral patterns of the ciliate Euplotes . Nature 1977; 268:362–364 [View Article]
    [Google Scholar]
  12. Gates MA. Pattern analysis in biology: a simple method for Morphogenetically constrained systems. Am Nat 1979; 114:344–349 [View Article]
    [Google Scholar]
  13. Alekperov I, Buskey E, Snegovaya N. New and little-known free-living ciliates from the plankton of the Caspian sea. Protistology 2006; 4:195–201
    [Google Scholar]
  14. Agamaliev FG. Faune des ciliés mésopsammiques de la Côte ouest de la Mer Caspienne. Cah Biol 1967; 8:359–402
    [Google Scholar]
  15. Washburn ES, Borror AC. Euplotes raikovi Agamaliev, 1966 (Ciliophora, Hypotrichida) from New Hampshire: description and morphogenesis. J Protozool 1972; 19:604–608 [View Article]
    [Google Scholar]
  16. Borror AC, Hill BF. The order Euplotida (Ciliophora): taxonomy, with division of Euplotes into several genera. J Eukaryot Microbiol 1995; 42:457–466 [View Article]
    [Google Scholar]
  17. Wallengren H. Zur Kenntnis Der vergleichenden Morphologie Der Hypotrichen. Bih K Svenska Vetensk-Akad Handl 1900; 26:1–31
    [Google Scholar]
  18. Živaljić S, Scherwass A, Schoenle A, Hohlfeld M, Quintela-Alonso P et al. A barotolerant ciliate isolated from the abyssal deep sea of the North Atlantic: Euplotes dominicanus sp. n. Eur J Protistol 2020; 73:125664 [View Article][PubMed]
    [Google Scholar]
  19. Boscaro V, Syberg-Olsen MJ, Irwin NAT, Del Campo J, Keeling PJ. What can environmental sequences tell us about the distribution of low-rank taxa? the case of Euplotes (Ciliophora, Spirotrichea), including a description of Euplotes enigma sp. nov. J Eukaryot Microbiol 2019; 66:281–293 [View Article][PubMed]
    [Google Scholar]
  20. Lian C, Wang Y, Li L, AL-Rasheid KAS, Jiang J et al. Taxonomy and SSU rDNA-based phylogeny of three new Euplotes species (Protozoa, Ciliophora) from China seas. J King Saud Univ Sci 2020; 32:1286–1292 [View Article]
    [Google Scholar]
  21. Lian C, Zhang T, Al-Rasheid KAS, Yu Y, Jiang J et al. Morphology and SSU rDNA-based phylogeny of two Euplotes species from China: E. wuhanensis sp. n. and E. muscicola Kahl, 1932 (Ciliophora, Euplotida). Eur J Protistol 2019; 67:1–14 [View Article][PubMed]
    [Google Scholar]
  22. Liu M, Fan Y, Miao M, Hu X, Al-Rasheid KAS et al. Morphological and morphogenetic redescriptions and SSU rRNA gene-based phylogeny of the poorly-known species Euplotes amieti Dragesco, 1970 (Ciliophora, Euplotida). Acta Protozool 2015; 54:171–182
    [Google Scholar]
  23. Syberg-Olsen MJ, Irwin NAT, Vannini C, Erra F, Di Giuseppe G et al. Biogeography and character evolution of the ciliate genus Euplotes (Spirotrichea, Euplotia), with description of Euplotes curdsi sp. nov. PLoS One 2016; 11:e0165442 [View Article][PubMed]
    [Google Scholar]
  24. Yan Y, Jiang L, Aufderheide KJ, Wright GA, Terekhov A et al. A Microfluidic-enabled mechanical microcompressor for the immobilization of live single- and multi-cellular specimens. Microsc Microanal 2013; 20:1–11
    [Google Scholar]
  25. Foissner W. An update of ‘basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa’. Int J Syst Evol Microbiol 2014; 64:271–292 [View Article]
    [Google Scholar]
  26. Abraham JS, Sripoorna S, Maurya S, Makhija S, Gupta R et al. Techniques and tools for species identification in ciliates: a review. Int J Syst Evol Microbiol 2019; 69:877–894 [View Article][PubMed]
    [Google Scholar]
  27. Vallesi A, Sjödin A, Petrelli D, Luporini P, Taddei AR et al. A new species of the γ-Proteobacterium Francisella, F. adeliensis sp. nov., endocytobiont in an Antarctic marine ciliate and potential evolutionary forerunner of pathogenic species. Microb Ecol 2019; 77:587–596 [View Article][PubMed]
    [Google Scholar]
  28. Medlin L, Elwood HJ, Stickel S, Sogin ML. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 1988; 71:491–499 [View Article][PubMed]
    [Google Scholar]
  29. Petroni G, Dini F, Verni F, Rosati G. A molecular approach to the tangled intrageneric relationships underlying phylogeny in Euplotes (Ciliophora, Spirotrichea). Mol Phylogenet Evol 2002; 22:118–130 [View Article][PubMed]
    [Google Scholar]
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 1997; 4:4876–4882
    [Google Scholar]
  31. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp 1999; 41:95–98
    [Google Scholar]
  32. Schmidt HA, Strimmer K, Vingron M, von Haeseler A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 2002; 18:502–504 [View Article][PubMed]
    [Google Scholar]
  33. Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods) Sunderland, Massachusetts: Sinauer Associates; 2003
    [Google Scholar]
  34. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19:1572–1574 [View Article][PubMed]
    [Google Scholar]
  35. Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics 1998; 14:817–818 [View Article][PubMed]
    [Google Scholar]
  36. Felsenstein J. Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 1988; 22:521–565 [View Article][PubMed]
    [Google Scholar]
  37. Valbonesi A, Luporini P. Euplotes bisulcatus, a key species for a better understanding of the organization and evolution of Euplotes argyrome patterns. Eur J Protistol 1995; 31:32–37 [View Article]
    [Google Scholar]
  38. Dallai R, Luporini P. Ultrastructural aspects of the development of the cytoplasmic connection between mating cells of the ciliate Euplotes crassus . Eur J Protistol 1989; 24:125–132 [View Article][PubMed]
    [Google Scholar]
  39. Jiang J, Zhang Q, Warren A, Al-Rasheid KAS, Song W. Morphology and SSU rRNA gene-based phylogeny of two marine Euplotes species, E. orientalis spec. nov. and E. raikovi (Ciliophora, Euplotida). Eur J Protistol 2010; 46:121–132 [View Article][PubMed]
    [Google Scholar]
  40. Zhao Y, Yi Z, Warren A, Song WB. Species delimitation for the molecular taxonomy and ecology of the widely distributed microbial eukaryote genus Euplotes (Alveolata, Ciliophora). Proc R Soc. B 2018; 285:20172159 [View Article]
    [Google Scholar]
  41. Julian Schwarz MV, Zuendorf A, Stoeck T, Schwarz MVJ. Morphology, ultrastructure, molecular phylogeny, and autecology of Euplotes elegans Kahl, 1932 (Hypotrichida; Euplotidae) isolated from the anoxic Mariager fjord, Denmark. J Eukaryot Microbiol 2007; 54:125–136 [View Article][PubMed]
    [Google Scholar]
  42. Tuffrau M. Révision du genre Euplotes, fondée sur la comparaison des structures superficielles. Hydrobiologia 1960; 15:1–77 [View Article]
    [Google Scholar]
  43. Yan Y, Fan Y, Luo X, El-Serehy HA, Bourland W et al. New contribution to the species-rich genus Euplotes: Morphology, ontogeny and systematic position of two species (Ciliophora; Euplotia). Eur J Protistol 2018; 64:20–39 [View Article][PubMed]
    [Google Scholar]
  44. Valbonesi A, Ortenzi C, Luporini P. The species problem in a ciliate with a high multiple mating type system, Euplotes crassus . J Protozool 1992; 39:45–54 [View Article]
    [Google Scholar]
  45. Gianni A, Piras L. Species structure in Euplotes crassus (Ciliophora, Hypotrichida). J Eukaryot Microbiol 1993; 40:155–161 [View Article]
    [Google Scholar]
  46. Nobili R, Luporini P, Dini F. Breeding systems, species relationships and evolutionary trends in some marine species of Euplotidae (Hypotrichida, Ciliata). In Battaglia B, Beardmore J. (editors) Marine Organisms, Genetics, Ecology and Evolution. Plenum Press New York: 1978 pp 591–616
    [Google Scholar]
  47. Sonneborn TM. The Paramecium aurelia complex of fourteen sibling species. Trans Am Microsc Soc 1975; 94:155–178 [View Article]
    [Google Scholar]
  48. Przybos E, Fokin SI. Data on the occurrence of species of the Paramecium aurelia complex world-wide. Protistology 2000; 1:179–184
    [Google Scholar]
  49. Simon EM, Nanney DL, Doerder FP. The “Tetrahymena pyriformis” complex of cryptic species. Biodivers Conserv 2008; 17:365–380 [View Article]
    [Google Scholar]
  50. Kuhlmann HW, Sato K. Interspecific mating reactions between Euplotes octocarinatus and Euplotes patella syngen 2. Eur J Protistol 1993; 29:24–31 [View Article][PubMed]
    [Google Scholar]
  51. Dini F, Nyberg D. Sex in ciliates. In Jones JG. editor Advances in Microbial Ecology 13 Boston, MA: Springer; 1993
    [Google Scholar]
  52. Luporini P, Miceli C, Ortenzi C. Evidence that the ciliate Euplotes raikovi releases mating inducing factors (gamones). J. Exp. Zool. 1983; 226:1–9 [View Article]
    [Google Scholar]
  53. Luporini P, Pedrini B, Alimenti C, Vallesi A. Revisiting fifty years of research on pheromone signaling in ciliates. Eur J Protistol 2016; 55:26–38 [View Article][PubMed]
    [Google Scholar]
  54. Jiang J, Zhang Q, Hu X, Shao C, Al-Rasheid KAS et al. Two new marine ciliates, Euplotes sinicus sp. nov. and Euplotes parabalteatus sp. nov., and a new small subunit rRNA gene sequence of Euplotes rariseta (Ciliophora, Spirotrichea, Euplotida). Int J Syst Evol Microbiol 2010; 60:1241–1251 [View Article]
    [Google Scholar]
  55. Chen X, Zhao Y, Al-Farraj SA, Al-Quraishy SA, El-Serehy HA et al. Taxonomic descriptions of two marine ciliates, Euplotes dammamensis n. sp. and Euplotes balteatus (Dujardin, 1841) Kahl, 1932 (Ciliophora, Spirotrichea, Euplotida), collected from the Arabian Gulf, Saudi Arabia. Acta Protozool 2013; 52:73–89
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004568
Loading
/content/journal/ijsem/10.1099/ijsem.0.004568
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error