1887

Abstract

A novel Gram-stain-negative, strictly aerobic, coccoid and agar-hydrolysing bacterium, designated RQJ05, was isolated from the marine red algae collected from the coastal area of Rizhao, PR China. Cells of strain RQJ05 were approximately 0.8–1.0×1.3–3.0 µm in size and motile by means of a polar flagellum. Growth occurred at 4–33 °C (optimum, 25–30 °C), pH 7.0–8.5 (optimum, pH 7.5–8.0) and in the presence of 1.0–7.0 % (w/v) NaCl (optimum, 2.0–3.0 %). Strain RQJ05 showed oxidase-positive and catalase-negative activities. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain RQJ05 formed a phylogenetic lineage with members of the family and exhibited 16S rRNA gene sequence similarities of 92.6, 91.3, 90.2 and 90.1 % to Q1, YM01, NSCS20N07D and B-10-31, respectively. The major cellular fatty acids of strain RQJ05 were summed feature 3 (C 7 and/or C 6), C and summed feature 8 (C 7 and/or C 6). The major polar lipids of strain RQJ05 were phosphatidylethanolamine, phosphatidylglycerol and two aminophospholipids. Strain RQJ05 contained Q-8 as the major respiratory quinone. The genomic DNA G+C content was 39.0 mol%. On the basis of genotypic, phenotypic and phylogenetic evidence, strain RQJ05 is presented as a representative of a novel species in a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain is RQJ05 (=KCTC 62846=MCCC 1H00352).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31770002)
    • Principle Award Recipient: Zong-Jun Du
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004558
2020-12-17
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/1/ijsem004558.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004558&mimeType=html&fmt=ahah

References

  1. Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like Proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 2004; 54:1773–1788 [View Article][PubMed]
    [Google Scholar]
  2. Jean WD, Hsu CY, Huang SP, Chen JS, Lin S et al. Reclassification of [Glaciecola] lipolytica and [Aestuariibacter] litoralis in Aliiglaciecola gen. nov., as Aliiglaciecola lipolytica comb. nov. and Aliiglaciecola litoralis comb. nov., respectively. Int J Syst Evol Microbiol 2013; 63:2859–2864 [View Article][PubMed]
    [Google Scholar]
  3. Park S, Yoon JH. Glaciecola aquimarina sp. nov., a gammaproteobacterium isolated from coastal seawater. Antonie van Leeuwenhoek 2013; 103:1141–1148 [View Article][PubMed]
    [Google Scholar]
  4. Shivaji S, Reddy GS. Phylogenetic analyses of the genus Glaciecola: emended description of the genus Glaciecola, transfer of Glaciecola mesophila, G. agarilytica, G. aquimarina, G. arctica, G. chathamensis, G. polaris and G. psychrophila to the genus Paraglaciecola gen. nov. as Paraglaciecola mesophila comb. nov., P. agarilytica comb. nov., P. aquimarina comb. nov., P. arctica comb. nov., P. chathamensis comb. nov., P. polaris comb. nov. and P. psychrophila comb. nov., and description of Paraglaciecola oceanifecundans sp. nov., isolated from the southern Ocean. Int J Syst Evol Microbiol 2014; 64:3264–3275 [View Article][PubMed]
    [Google Scholar]
  5. Jin HM, Jeong HI, Jeon CO. Aliiglaciecola aliphaticivorans sp. nov., an aliphatic hydrocarbon-degrading bacterium, isolated from a sea-tidal flat and emended description of the genus Aliiglaciecola Jean et al. 2013. Int J Syst Evol Microbiol 2015; 65:1550–1555 [View Article][PubMed]
    [Google Scholar]
  6. Liu QQ, Wang Y, Li J, Du ZJ, Chen G-J. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014; 64:2204–2209 [View Article][PubMed]
    [Google Scholar]
  7. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  8. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  9. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  10. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  12. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A et al. Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (Approved Lists 1980). Int J Syst Evol Microbiol 2008; 58:2589–2596 [View Article][PubMed]
    [Google Scholar]
  13. Jean WD, Chen JS, Lin YT, Shieh WY. Bowmanella denitrificans gen. nov., sp. nov., a denitrifying bacterium isolated from seawater from An-Ping Harbour, Taiwan. Int J Syst Evol Microbiol 2006; 56:2463–2467 [View Article][PubMed]
    [Google Scholar]
  14. Lai Q, Yuan J, Wang B, Sun F, Qiao N et al. Bowmanella pacifica sp. nov., isolated from a pyrene-degrading consortium. Int J Syst Evol Microbiol 2009; 59:1579–1582 [View Article][PubMed]
    [Google Scholar]
  15. Bowman JP, McCammon SA, Brown JL, McMeekin TA. Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol 1998; 48:1213–1222 [View Article]
    [Google Scholar]
  16. Romanenko LA, Zhukova NV, Rohde M, Lysenko AM, Mikhailov VV et al. Glaciecola mesophila sp. nov., a novel marine agar-digesting bacterium. Int J Syst Evol Microbiol 2003; 53:647–651 [View Article][PubMed]
    [Google Scholar]
  17. Yong JJ, Park SJ, Kim HJ, Rhee SK. Glaciecola agarilytica sp. nov., an agar-digesting marine bacterium from the East Sea, Korea. Int J Syst Evol Microbiol 2007; 57:951–953 [View Article][PubMed]
    [Google Scholar]
  18. Matsuyama H, Hirabayashi T, Kasahara H, Minami H, Hoshino T et al. Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 2006; 56:2883–2886 [View Article][PubMed]
    [Google Scholar]
  19. Baik KS, Park YD, Seong CN, Kim EM, Bae KS et al. Glaciecola nitratireducens sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2006; 56:2185–2188 [View Article][PubMed]
    [Google Scholar]
  20. Van Trappen SV, Tan TL, Yang J, Mergaert J, Swings J. Glaciecola polaris sp. nov., a novel budding and prosthecate bacterium from the Arctic Ocean, and emended description of the genus Glaciecola . Int J Syst Evol Microbiol 2004; 54:1765–1771 [View Article][PubMed]
    [Google Scholar]
  21. Zhang DC, Yu Y, Chen B, Wang HX, Liu HC et al. Glaciecola psychrophila sp. nov., a novel psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 2006; 56:2867–2869 [View Article][PubMed]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  23. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. Isme J 2017; 11:2399–2406 [View Article][PubMed]
    [Google Scholar]
  24. Veerakumar S. Recombinant β-agarases: insights into molecular, biochemical, and physiochemical characteristics. Biotech 2018; 8:445
    [Google Scholar]
  25. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  26. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee On The Taxonomy Of Flavobacterium And Cytophaga-Like Bacteria Of The International Committee On Systematics Of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  27. Dong XZ, Cai MY. Determination of biochemical characteristics. Manual for the Systematic Identification of General Bacteria Beijing: Science Press (In Chinese); 2001 pp 370–398
    [Google Scholar]
  28. CLSI Performance Standards for Antimicrobial Susceptibility Testing, 22nd Informational Supplement M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  29. Collins MD, Goodfellow M, Minnikin DE. Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 1980; 118:29–37 [View Article][PubMed]
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  31. Xu X-W, Wu Y-H, Wang C-S, Oren A, Zhou P-J et al. Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 2007; 57:717–720 [View Article][PubMed]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.; 1990
    [Google Scholar]
  33. Jeon CK, Lim JM, Park DJ, Kim CJ. Salinimonas chungwhensis gen. nov., sp. nov., a moderately halophilic bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 2005; 55:239–243 [View Article][PubMed]
    [Google Scholar]
  34. Yan S, Yu M, Wang Y, Shen C, Zhang XH. Catenovulum agarivorans gen. nov., sp. nov., a peritrichously flagellated, chain-forming, agar-hydrolysing gammaproteobacterium from seawater. Int J Syst Evol Microbiol 2011; 61:2866–2873 [View Article][PubMed]
    [Google Scholar]
  35. Li DQ, Zhou YX, Liu T, Chen GJ, Du ZJ. Catenovulum maritimus sp. nov., a novel agarolytic gammaproteobacterium isolated from the marine algae Porphyra yezoensis Ueda (AST58-103), and emended description of the genus Catenovulum . Antonie van Leeuwenhoek 2015; 108:427–434 [View Article][PubMed]
    [Google Scholar]
  36. Shi MJ, Du WJ, Wang C, Chen GJ, Du ZJ. Catenovulum sediminis sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2017; 67:3894–3898 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004558
Loading
/content/journal/ijsem/10.1099/ijsem.0.004558
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error