1887

Abstract

A Gram-stain-negative and aerobic bacterial strain, designated as JL3514, was isolated from surface water of the hydrothermal system around Kueishan Island. The isolate formed red colonies and cells were non-flagellated, rod-shaped and contained methanol-soluble pigments. Growth was observed at 10–50 °C (optimum, 30 °C), at pH 5.0–9.0 (optimum, pH 7.0) and in the presence of 0–9 % (w/v) NaCl (optimum, 2 %). Strain JL3514 was positive for catalase and weakly positive for oxidase. Results of 16S rRNA gene sequence analyses showed highest similarities to species in the family , namely (96.1 %), (96.0 %), (96.0 %) and (96.0 %). Phylogenetic analysis based on core gene sequences revealed that the isolate formed a distinct branch with the related species and it had a lower average amino acid identity value than the suggested threshold for genera boundaries. The major fatty acids (>5 %) were summed feature 8 (C 7 and/or C 6), summed feature 3 (C 7 and/or C 6), C, C 6, C 2-OH and C. The dominant polar lipids comprised diphosphatidylglycerol, sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, glycolipid, two unidentified lipids and one unidentified phospholipid. The main respiratory quinones were ubiquinone-10 (95.7 %) and ubiquinone-9 (4.3 %). The DNA G+C content from the genome was 63.0 mol%. Based on the presented data, we consider strain JL3514 to represent a novel genus of the family , with the name gen. nov., sp. nov. The type strain is JL3514 (=KCTC 62623=MCCC 1K03561).

Funding
This study was supported by the:
  • , Science and Technology Program of Guangzhou, China , (Award 201904020029)
  • , Strait Postdoctoral Exchange Funding program of Fujian Province , (Award K8318001)
  • , China Ocean Mineral Resources Research and Development Association, http://dx.doi.org/10.13039/501100010823, (Award DY135-E2-1-04)
  • , National Natural Science Foundation of China, http://dx.doi.org/10.13039/501100001809, (Award 91951209)
  • , National Natural Science Foundation of China, http://dx.doi.org/10.13039/501100001809, (Award 41861144018)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004552
2020-11-11
2020-11-25
Loading full text...

Full text loading...

References

  1. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005; 55:1907–1919 [CrossRef][PubMed]
    [Google Scholar]
  2. Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG et al. Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 2007; 57:2207–2211 [CrossRef][PubMed]
    [Google Scholar]
  3. Liu YH, Fang BZ, Dong ZY, Li L, Mohamad OAA et al. Croceibacterium gen. nov., with description of Croceibacterium ferulae sp. nov., an endophytic bacterium isolated from Ferula sinkiangensis K. M. Shen and reclassification of Porphyrobacter mercurialis as Croceibacterium mercuriale comb. nov. Int J Syst Evol Microbiol 2019; 69:2547–2554 [CrossRef][PubMed]
    [Google Scholar]
  4. Xu XW, Wu YH, Wang CS, Wang XG, Oren A et al. Croceicoccus marinus gen. nov., sp. nov., a yellow-pigmented bacterium from deep-sea sediment, and emended description of the family Erythrobacteraceae. Int J Syst Evol Microbiol 2009; 59:2247–2253 [CrossRef][PubMed]
    [Google Scholar]
  5. Feng X-M, Mo Y-X, Han L, Nogi Y, Zhu Y-H et al. Qipengyuania sediminis gen. nov., sp. nov., a member of the family Erythrobacteraceae isolated from subterrestrial sediment. Int J Syst Evol Microbiol 2015; 65:3658–3665 [CrossRef][PubMed]
    [Google Scholar]
  6. Xu L, Sun C, Fang C, Oren A, Xu X-W. Genomic-based taxonomic classification of the family Erythrobacteraceae. Int J Syst Evol Microbiol 2020; 70:4470–4495 [CrossRef][PubMed]
    [Google Scholar]
  7. Jiao N, Zhang Y, Zeng Y, Hong N, Liu R et al. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol 2007; 9:3091–3099 [CrossRef][PubMed]
    [Google Scholar]
  8. Li ZY, Wu YH, Huo YY, Cheng H, Wang CS et al. Complete genome sequence of a benzo[a]pyrene-degrading bacterium Altererythrobacter epoxidivorans CGMCC 1.7731(T). Mar Genomics 2016; 25:39–41 [CrossRef][PubMed]
    [Google Scholar]
  9. Hu Y, MacMillan JB. Erythrazoles A-B, cytotoxic benzothiazoles from a marine-derived Erythrobacter sp. Org Lett 2011; 13:6580–6583 [CrossRef][PubMed]
    [Google Scholar]
  10. Wu YH, Xu L, Meng FX, Zhang DS, Wang CS et al. Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:116–121 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim JH, Yoon JH, Kim W. Altererythrobacter sediminis sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66:5424–5429 [CrossRef][PubMed]
    [Google Scholar]
  12. Kang JW, Kim MS, Lee JH, Baik KS, Seong CN. Altererythrobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016; 66:2491–2496 [CrossRef][PubMed]
    [Google Scholar]
  13. Qu JH, Ma WW, Li HF, Wang XF, Lu BB et al. Altererythrobacter amylolyticus sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2019; 69:1231–1236 [CrossRef][PubMed]
    [Google Scholar]
  14. Xue X, Zhang K, Cai F, Dai J, Wang Y et al. Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol 2012; 62:28–32 [CrossRef][PubMed]
    [Google Scholar]
  15. Xue H, Piao CG, Guo MW, Wang LF, Fang W et al. Description of Altererythrobacter aerius sp. nov., isolated from air, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol 2016; 66:4543–4548 [CrossRef][PubMed]
    [Google Scholar]
  16. Dahal RH, Kim J. Altererythrobacter fulvus sp. nov., a novel alkalitolerant alphaproteobacterium isolated from forest soil. Int J Syst Evol Microbiol 2018; 68:1502–1508 [CrossRef][PubMed]
    [Google Scholar]
  17. Yuan CG, Chen X, Jiang Z, Chen W, Liu L et al. Altererythrobacter lauratis sp. nov. and Altererythrobacter palmitatis sp. nov., isolated from a Tibetan hot spring. Antonie Van Leeuwenhoek 2017; 110:1077–1086 [CrossRef][PubMed]
    [Google Scholar]
  18. Fidalgo C, Rocha J, Martins R, Proença DN, Morais PV et al. Altererythrobacter halimionae sp. nov. and Altererythrobacter endophyticus sp. nov., two endophytes from the salt marsh plant Halimione portulacoides. Int J Syst Evol Microbiol 2017; 67:3057–3062 [CrossRef][PubMed]
    [Google Scholar]
  19. Nedashkovskaya OI, Cho SH, Joung Y, Joh K, Kim MN et al. Altererythrobacter troitsensis sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2013; 63:93–97 [CrossRef][PubMed]
    [Google Scholar]
  20. Tang K, Zhang Y, Lin D, Han Y, Chen C, Chen AT et al. Cultivation-Independent and Cultivation-Dependent analysis of microbes in the shallow-sea hydrothermal system off Kueishantao Island, Taiwan: unmasking heterotrophic bacterial diversity and functional capacity. Front Microbiol 2018; 9:1–15 [CrossRef]
    [Google Scholar]
  21. Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991; 13:171–174 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  23. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  25. Guo J, Sun J, Xu Y, Fang L, Jiao N et al. Arenibacter aquaticus sp. nov., a marine bacterium isolated from surface sea water in the South China Sea. Int J Syst Evol Microbiol 2020; 70:958–963 [CrossRef][PubMed]
    [Google Scholar]
  26. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118 [CrossRef]
    [Google Scholar]
  27. Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016; 6:24373 [CrossRef][PubMed]
    [Google Scholar]
  28. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [CrossRef][PubMed]
    [Google Scholar]
  29. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [CrossRef][PubMed]
    [Google Scholar]
  30. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  31. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  32. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  33. Sun F, Wang B, Du Y, Liu X, Lai Q et al. Arenibacter nanhaiticus sp. nov., isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 2010; 60:78–83 [CrossRef][PubMed]
    [Google Scholar]
  34. Hou L, Zhang Y, Sun J, Xie X. Acuticoccus yangtzensis gen. nov., sp. nov., a novel member in the family Rhodobacteraceae, isolated from the surface water of the Yangtze estuary. Curr Microbiol 2015; 70:176–182 [CrossRef][PubMed]
    [Google Scholar]
  35. Wang YN, He WH, He H, Du X, Jia B et al. Pseudomonas nitritireducens sp. nov., a nitrite reduction bacterium isolated from wheat soil. Arch Microbiol 2012; 194:809–813 [CrossRef][PubMed]
    [Google Scholar]
  36. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: MIDI; 1997
    [Google Scholar]
  37. Kates M. Techniques of Lipidology 106:107, 2nd ed. Amsterdam: Elsevier; 1986 pp 241–246
    [Google Scholar]
  38. Collins MD. Isoprenoid Quinone Analyses in Bacterial Classification and Identification London: Academic Press; 1985
    [Google Scholar]
  39. Kumar NR, Nair S, Langer S, Busse HJ, Kämpfer P. Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 2008; 58:839–844 [CrossRef][PubMed]
    [Google Scholar]
  40. Kang H, Kim H, Joh K. Altererythrobacter maritimus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2019; 69:1566–1572 [CrossRef][PubMed]
    [Google Scholar]
  41. Yoon JH, Kang KH, Yeo SH, Oh TK. Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2005; 55:1167–1170 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004552
Loading
/content/journal/ijsem/10.1099/ijsem.0.004552
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error