1887

Abstract

A novel obligately anaerobic spirochete strain K2 was isolated from bottom marine sediments at Crater Bay of Yankicha Island (Kuril Islands, Russia). Strain K2 had helical shape and Gram-negatively stained. The optimal growth conditions were as follows: the optimum temperature was 28–30 °C with range 5–34 °C; optimal pH at 7.0–7.5 with range of 6.8–8.5; NaCl optimum at 3–3.5 % (w/v) and range of 1–7 % (w/v). Strain K2 was catalase- and oxidase-negative. Glucose fermentation products were acetate, lactate, ethanol, CO, H. The major fatty acids were C, -C, -C C DMA, -C DMA. The G+C content of genomic DNA was 43.2 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain K2 belonged to the genus of the family . The 16S rRNA gene sequence similarity of strain K2 and DSM 2029 and DSM 104770 was 96 and 94 %, respectively. Based on the results of our study, we propose the name sp. nov.; type strain K2 (=DSM 16308=VKM B-3266). Also, the taxonomic status of was revised: 16S rRNA genes sequence showed less than 89 % similarity to nearest phylogenetic neighbours. Therefore, we proposed to separate this species into a novel genus gen. nov., comb. nov.

Funding
This study was supported by the:
  • Russian Science Foundation (Award 20-14-00137)
    • Principle Award Recipient: Margarita Y. Grabovich
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004544
2020-10-30
2021-07-29
Loading full text...

Full text loading...

References

  1. Kh S, Bidzhieva DS, Sokolova DSG, Kostrikina NA, Poltaraus AB et al. Sphaerochaeta halotolerans sp. nov., a novel spherical halotolerant spirochete from a Russian heavy oil reservoir, emended description of the genus Sphaerochaeta, reclassification of Sphaerochaeta coccoides to a new genus Parasphaerochaeta gen. nov. as Parasphaerochaeta coccoides comb. nov. and proposal of Sphaerochaetaceae fam. nov. Int J Syst Evol Microbiol 2020; 70:1–12
    [Google Scholar]
  2. Dubinina G, Grabovich M, Leshcheva N, Rainey FA, Gavrish E. Spirochaeta perfilievii sp. nov., an oxygen-tolerant, sulfide-oxidizing, sulfur- and thiosulfate-reducing spirochaete isolated from a saline spring. Int J Syst Evol Microbiol 2011; 61:110–117 [View Article][PubMed]
    [Google Scholar]
  3. Aksenova HY, Rainey FA, Janssen PH, Zavarzin GA, Morgan HW. Spirochaeta thermophila sp. nov., an Obligately Anaerobic, Polysaccharolytic, Extremely Thermophilic Bacterium. Int J Syst Bacteriol 1992; 42:175–177 [View Article]
    [Google Scholar]
  4. Arroua B, Ranchou-Peyruse A, Ranchou-Peyruse M, Magot M, Urios L et al. Pleomorphochaeta caudata gen. nov., sp. nov., an anaerobic bacterium isolated from an offshore oil well, reclassification of Sphaerochaeta multiformis MO-SPC2T as Pleomorphochaeta multiformis MO-SPC2T comb. nov. as the type strain of this novel genus and emended description of the genus Sphaerochaeta . Int J Syst Evol Microbiol 2017; 67:417–424 [View Article][PubMed]
    [Google Scholar]
  5. Breznak JA, Warnecke F. Spirochaeta cellobiosiphila sp. nov., a facultatively anaerobic, marine spirochaete. Int J Syst Evol Microbiol 2008; 58:2762–2768 [View Article][PubMed]
    [Google Scholar]
  6. Dubinina GA, Leshcheva N V, Grabovich MY. The colorless sulfur bacterium Thiodendron is actually a symbiotic association of spirochetes and sulfidogens. Microbiology 1993; 62:432–444
    [Google Scholar]
  7. Dubinina GA, Grabovich MI, Chernyshova II. [The role of oxygen in the regulation of the metabolism of aerotolerant spirochetes, a major component of "Thiodendron" bacterial sulfur mats]. Mikrobiologiia 2004; 73:725–733[PubMed]
    [Google Scholar]
  8. Dubinina G, Grabovich M, Leshcheva N, Gronow S, Gavrish E et al. Spirochaeta sinaica sp. nov., a halophilic spirochaete isolated from a cyanobacterial mat. Int J Syst Evol Microbiol 2015; 65:3872–3877 [View Article][PubMed]
    [Google Scholar]
  9. Harwood CS, Canale-Parola E. Spirochaeta isovalerica sp. nov., a marine anaerobe that forms branched-chain fatty acids as fermentation products. Int J Syst Bacteriol 1983; 33:573–579 [View Article]
    [Google Scholar]
  10. Miyazaki M, Sakai S, Yamanaka Y, Saito Y, Takai K et al. Spirochaeta psychrophila sp. nov., a psychrophilic spirochaete isolated from subseafloor sediment, and emended description of the genus Spirochaeta . Int J Syst Evol Microbiol 2014; 64:2798–2804 [View Article][PubMed]
    [Google Scholar]
  11. Shivani Y, Subhash Y, Sasikala C, Ramana CV. Characterisation of a newly isolated member of a candidatus lineage, Marispirochaeta aestuarii gen. nov., sp. nov. Int J Syst Evol Microbiol 2017; 67:3929–3936 [View Article][PubMed]
    [Google Scholar]
  12. Shivani Y, Subhash Y, Sasikala C, Ramana CV. Description of 'Candidatus Marispirochaeta associata' and reclassification of Spirochaeta bajacaliforniensis, Spirochaeta smaragdinae and Spirochaeta sinaica to a new genus Sediminispirochaeta gen. nov. as Sediminispirochaeta bajacaliforniensis comb. nov., Sediminispirochaeta smaragdinae comb. nov. and Sediminispirochaeta sinaica comb. nov. Int J Syst Evol Microbiol 2016; 66:5485–5492 [View Article][PubMed]
    [Google Scholar]
  13. Shivani Y, Subhash Y, Tushar L, Sasikala C, Ramana CV, Ch R V. Spirochaeta lutea sp. nov., isolated from marine habitats and emended description of the genus Spirochaeta . Syst Appl Microbiol 2015; 38:110–114 [View Article][PubMed]
    [Google Scholar]
  14. Sravanthi T, Tushar L, Sasikala C, Ramana CV. Alkalispirochaeta cellulosivorans gen. nov., sp. nov., a cellulose-hydrolysing, alkaliphilic, halotolerant bacterium isolated from the gut of a wood-eating cockroach (Cryptocercuspunctulatus), and reclassification of four species of Spirochaeta as new combinations within Alkalispirochaeta gen. nov. Int J Syst Evol Microbiol 2016; 66:1612–1619 [View Article][PubMed]
    [Google Scholar]
  15. Subhash Y, Lee S-S. Description of Oceanispirochaeta sediminicola gen. nov., sp. nov., an obligately anaerobic bacterium isolated from coastal marine sediments, and reclassification of Spirochaeta litoralis as Oceanispirochaeta litoralis comb. nov. Int J Syst Evol Microbiol 2017; 67:3403–3409 [View Article][PubMed]
    [Google Scholar]
  16. Zhilina TN, Zavarzin GA, Rainey F, Kevbrin VV, Kostrikina NA et al. Spirochaeta alkalica sp. nov., Spirochaeta aficana sp. nov., and Spirochaeta asiatica sp. nov., alkaliphilic anaerobes from the continental soda lakes in central Asia and the East African Rift. Int J Syst Bacteriol 1996; 46:305–312 [View Article][PubMed]
    [Google Scholar]
  17. Pfennig N, Lippert KD. Über das vitamin B12-Bedürfnis phototropher Schwefelbakterien. Archiv Mikrobiol 1966; 55:245–256 [View Article]
    [Google Scholar]
  18. Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 1963; 17:208–212 [View Article][PubMed]
    [Google Scholar]
  19. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article][PubMed]
    [Google Scholar]
  20. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  21. Korlach J, Bjornson KP, Chaudhuri BP, Cicero RL, Flusberg BA et al. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol 2010; 472:431–455 [View Article][PubMed]
    [Google Scholar]
  22. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. Ncbi prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  23. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. Refseq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article][PubMed]
    [Google Scholar]
  24. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  27. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Preprints 2016; 4:e1900v1
    [Google Scholar]
  28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  29. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  31. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  33. Owen RJ, Lapage SP. The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic applications. J Appl Bacteriol 1976; 41:335–340 [View Article][PubMed]
    [Google Scholar]
  34. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004544
Loading
/content/journal/ijsem/10.1099/ijsem.0.004544
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error