1887

Abstract

A Gram-stain-positive, aerobic, rod-shaped, non-motile, endospore-forming and UV-resistant bacterial strain, designated strain TKL69, was isolated from sandy soil sampled in the Taklimakan Desert. The strain grew at 20–50 °C, pH 6–9 and with 0–12 % (w/v) NaCl. The major fatty acids were anteiso-C, iso-C and C. The only respiratory quinone was MK-7. The cell-wall peptidoglycan was -diaminopimelic acid. Diphosphatidyl glycerol, two unidentified aminophospholipids and one unidentified phospholipid were identified as the major polar lipids. Genomic DNA analysis revealed a G+C content of 38.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TKL69 has the highest similarity to CGMCC 1.12331 (96.9 %) but belongs to an independent taxon separated from other genera of the family . Phylogenetic, phenotypic and chemotaxonomic analyses suggested that strain TKL69 represents a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed, with the type strain being TKL69 (=JCM 33497=CICC 24779).

Funding
This study was supported by the:
  • Binglin Zhang , National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (CN) , (Award 41801045)
  • Wei Zhang , National Natural Science Foundation of China , (Award 31870479)
  • Wei Zhang , National Natural Science Foundation of China , (Award 31570498)
  • Guangxiu Liu , the Key Foreign Cooperation Projects of the Bureau of International Cooperation of Chinese Academy of Sciences , (Award 131B62KYSB20160014)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004536
2020-10-29
2020-11-25
Loading full text...

Full text loading...

References

  1. Fischer A. "Untersuchungen über bakterien". Jahrbuch für Wissenschaftliche Botanik 1895; 27:1–163
    [Google Scholar]
  2. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [CrossRef]
    [Google Scholar]
  3. Finore I, Gioiello A, Leone L, Orlando P, Romano I et al. Aeribacillus composti sp. nov. a thermophilic Bacillus isolated from olive mill pomace compost. Int J Syst Evol Microbiol 2017; 67:4830–4835 [CrossRef][PubMed]
    [Google Scholar]
  4. Sheu SY, Arun AB, Jiang SR, Young CC, Chen WM. Allobacillus halotolerans gen. nov. sp. nov. isolated from shrimp paste. Int J Syst Evol Microbiol 2011; 61:1023–1027 [CrossRef][PubMed]
    [Google Scholar]
  5. Wang D, Xiang Y, Jiang C, Zhang J, Hua Z et al. Pueribacillus theae gen. nov., sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 2018; 68:2878–2882 [CrossRef][PubMed]
    [Google Scholar]
  6. Liu Y, Liang J, Zhang Z, Yu M, Wang M et al. Aureibacillus halotolerans gen. nov. sp. nov. isolated from sediment of the northern okinawa trough. Int J Syst Evol Microbiol 2015; 65:3950–3958
    [Google Scholar]
  7. Nakamura K, Haruta S, Ueno S, Ishii M, Yokota A et al. Cerasibacillus quisquiliarum gen. nov. sp. nov. isolated from a semi-continuous decomposing system of kitchen refuse. Int J Syst Evol Microbiol 2004; 54:1063–1069 [CrossRef][PubMed]
    [Google Scholar]
  8. Hirota K, Aino K, Yumoto I. Amphibacillus iburiensis sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 2013; 63:4303–4308 [CrossRef][PubMed]
    [Google Scholar]
  9. L'Haridon S, Miroshnichenko ML, Kostrikina NA, Tindall BJ, Spring S et al. Vulcanibacillus modesticaldus gen. nov., sp. nov., a strictly anaerobic, nitrate-reducing bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 2006; 56:1047–1053 [CrossRef][PubMed]
    [Google Scholar]
  10. Azmatunnisa Begum M, Varshini V, Rahul K, Chandana A, Sasikala C et al. Description of Alteribacillus alkaliphilus sp. nov., reassignment of Bacillus iranensis (Bagheri et al. 2012) as Alteribacillus iranensis comb. nov. and emended description of the genus Alteribacillus. Int J Syst Evol Microbiol 2016; 66:4772–4778 [CrossRef][PubMed]
    [Google Scholar]
  11. Dulger S, Demirbag Z, Belduz AO. Anoxybacillus ayderensis sp. nov. and Anoxybacillus kestanbolensis sp. nov. Int J Syst Evol Microbiol 2004; 54:1499–1503 [CrossRef][PubMed]
    [Google Scholar]
  12. Amoozegar MA, Bagheri M, Didari M, Mehrshad M, Schumann P et al. Aquibacillus halophilus gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Virgibacillus koreensis as Aquibacillus koreensis comb. nov. and Virgibacillus albus as Aquibacillus albus comb. nov. Int J Syst Evol Microbiol 2014; 64:3616–3623 [CrossRef][PubMed]
    [Google Scholar]
  13. Sultanpuram VR, Mothe T. Thalassorhabdus alkalitolerans gen. nov., sp. nov., a novel Bacillaceae member isolated from marine sediment. Int J Syst Evol Microbiol 2018; 68:2969–2976 [CrossRef][PubMed]
    [Google Scholar]
  14. Didari M, Amoozegar MA, Bagheri M, Schumann P, Spröer C et al. Alteribacillus bidgolensis gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Bacillus persepolensis as Alteribacillus persepolensis comb. nov. Int J Syst Evol Microbiol 2012; 62:2691–2697 [CrossRef][PubMed]
    [Google Scholar]
  15. Márquez MC, Carrasco IJ, Xue Y, Ma Y, Cowan DA et al. Aquisalibacillus elongatus gen. nov., sp. nov., a moderately halophilic bacterium of the family Bacillaceae isolated from a saline lake. Int J Syst Evol Microbiol 2008; 58:1922–1926 [CrossRef][PubMed]
    [Google Scholar]
  16. Yang G, Zhou S, gen Ssoli, nov novsp. a moderately thermotolerant member of the family bacillaceae. Int J Syst Evol Microbiol 2014; 64:1647–1653
    [Google Scholar]
  17. Sultanpuram VR, Mothe T. Salipaludibacillus aurantiacus gen. nov., sp. nov. a novel alkali tolerant bacterium, reclassification of Bacillus agaradhaerens as Salipaludibacillus agaradhaerens comb. nov. and Bacillus neizhouensis as Salipaludibacillus neizhouensis comb. nov. Int J Syst Evol Microbiol 2016; 66:2747–2753 [CrossRef][PubMed]
    [Google Scholar]
  18. Hirota K, Okamoto T, Matsuyama H, Yumoto I. Polygonibacillus indicireducens gen. nov., sp. nov., an indigo-reducing and obligate alkaliphile isolated from indigo fermentation liquor for dyeing. Int J Syst Evol Microbiol 2016; 66:4650–4656 [CrossRef][PubMed]
    [Google Scholar]
  19. Xi J, Wang Y, Yang X, Tao Y, Shao Y et al. Mongoliimonas terrestris gen. nov., sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2017; 67:3010–3014 [CrossRef][PubMed]
    [Google Scholar]
  20. Bhatt HB, Azmatunnisa Begum M, Chintalapati S, Chintalapati VR, Singh SP. Desertibacillus haloalkaliphilus gen. nov., sp. nov., isolated from a saline desert. Int J Syst Evol Microbiol 2017; 67:4435–4442 [CrossRef][PubMed]
    [Google Scholar]
  21. Yang Z-W, Salam N, Hua Z-S, Liu B-B, Han M-X et al. Siccirubricoccus deserti gen. nov., sp. nov., a proteobacterium isolated from a desert sample. Int J Syst Evol Microbiol 2017; 67:4862–4867 [CrossRef][PubMed]
    [Google Scholar]
  22. Song L, Li WJ, Wang QL, Chen GZ, Zhang YS et al. Jiangella gansuensis gen. nov., sp. nov., a novel actinomycete from a desert soil in north-west China. Int J Syst Evol Microbiol 2005; 55:881–884 [CrossRef][PubMed]
    [Google Scholar]
  23. Liu M, Dai J, Liu Y, Cai F, Wang Y et al. Desertibacter roseus gen. nov., sp. nov., a gamma radiation-resistant bacterium in the family Rhodospirillaceae, isolated from desert sand. Int J Syst Evol Microbiol 2011; 61:1109–1113 [CrossRef][PubMed]
    [Google Scholar]
  24. Zhang B, Tang S, Chen X, Zhang G, Zhang W et al. Streptomyces qaidamensis sp. nov., isolated from sand in the Qaidam Basin, China. J Antibiot 2018; 71:880–886 [CrossRef][PubMed]
    [Google Scholar]
  25. Peng F, Liu M, Zhang L, Dai J, Luo X et al. Planobacterium taklimakanense gen. nov., sp. nov., a member of the family Flavobacteriaceae that exhibits swimming motility, isolated from desert soil. Int J Syst Evol Microbiol 2009; 59:1672–1678 [CrossRef][PubMed]
    [Google Scholar]
  26. de Groot A, Chapon V, Servant P, Christen R, Saux MF-L et al. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 2005; 55:2441–2446 [CrossRef][PubMed]
    [Google Scholar]
  27. Collins MD, Hutson RA, Grant IR, Patterson MF. Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 2000; 50:731–734 [CrossRef][PubMed]
    [Google Scholar]
  28. Liu M, Liu Y, Wang Y, Luo X, Dai J et al. Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. Int J Syst Evol Microbiol 2011; 61:433–437 [CrossRef][PubMed]
    [Google Scholar]
  29. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [CrossRef][PubMed]
    [Google Scholar]
  30. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  33. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  34. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  35. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef]
    [Google Scholar]
  37. Adékambi T, Shinnick TM, Raoult D, Drancourt M. Complete rpoB gene sequencing as a suitable supplement to DNA-DNA hybridization for bacterial species and genus delineation. Int J Syst Evol Microbiol 2008; 58:1807–1814 [CrossRef][PubMed]
    [Google Scholar]
  38. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003; 13:2178–2189 [CrossRef][PubMed]
    [Google Scholar]
  39. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  41. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  42. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol 1974; 24:54–63 [CrossRef]
    [Google Scholar]
  43. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993; 43:805–812 [CrossRef]
    [Google Scholar]
  44. Kurup PV, Schmitt JA. Numerical taxonomy of Nocardia. Can J Microbiol 1973; 19:1035–1048 [CrossRef][PubMed]
    [Google Scholar]
  45. Yang N, Ren B, Liu ZH, Dai HQ, Wang J et al. Salinibacillus xinjiangensis sp. nov., a halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2014; 64:27–32 [CrossRef][PubMed]
    [Google Scholar]
  46. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  47. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [CrossRef]
    [Google Scholar]
  48. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [CrossRef]
    [Google Scholar]
  49. Kämpfer P, Falsen E, Lodders N, Langer S, Busse HJ et al. Ornithinibacillus contaminans sp. nov., an endospore-forming species. Int J Syst Evol Microbiol 2010; 60:2930–2934 [CrossRef][PubMed]
    [Google Scholar]
  50. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–208
    [Google Scholar]
  51. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  52. Ren B, Yang N, Wang J, Ma XL, Wang Q et al. Amphibacillus marinus sp. nov., a member of the genus Amphibacillus isolated from marine mud. Int J Syst Evol Microbiol 2013; 63:1485–1491 [CrossRef][PubMed]
    [Google Scholar]
  53. Ren PG, Zhou PJ. Salinibacillus aidingensis gen. nov., sp. nov. and Salinibacillus kushneri sp. nov., moderately halophilic bacteria isolated from a neutral saline lake in Xin-Jiang, China. Int J Syst Evol Microbiol 2005; 55:949–953 [CrossRef][PubMed]
    [Google Scholar]
  54. Mayr R, Busse HJ, Worliczek HL, Ehling-Schulz M, Scherer S. Ornithinibacillus gen. nov., with the species Ornithinibacillus bavariensis sp. nov. and Ornithinibacillus californiensis sp. nov. Int J Syst Evol Microbiol 2006; 56:1383–1389 [CrossRef][PubMed]
    [Google Scholar]
  55. Qu JH, Fu YH, Yue YF, Li HF. Description of Ornithinibacillus gellani sp. nov., a halophilic bacterium isolated from lake sediment, and emended description of the genus Ornithinibacillus. Int J Syst Evol Microbiol 2019; 69:2632–2637 [CrossRef][PubMed]
    [Google Scholar]
  56. Heyrman J, Logan NA, Busse HJ, Balcaen A, Lebbe L et al. Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus. Int J Syst Evol Microbiol 2003; 53:501–511 [CrossRef][PubMed]
    [Google Scholar]
  57. Lee JS, Lim JM, Lee KC, Lee JC, Park YH et al. Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. Int J Syst Evol Microbiol 2006; 56:251–257 [CrossRef][PubMed]
    [Google Scholar]
  58. Lu J, Nogi Y, Takami H. Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 2001; 205:291–297 [CrossRef][PubMed]
    [Google Scholar]
  59. Yumoto I, Hirota K, Nodasaka Y, Nakajima K. Oceanobacillus oncorhynchi sp. nov., a halotolerant obligate alkaliphile isolated from the skin of a rainbow trout (Oncorhynchus mykiss), and emended description of the genus Oceanobacillus. Int J Syst Evol Microbiol 2005; 55:1521–1524 [CrossRef][PubMed]
    [Google Scholar]
  60. Carrasco IJ, Márquez MC, Xue Y, Ma Y, Cowan DA et al. Sediminibacillus halophilus gen. nov., sp. nov., a moderately halophilic, Gram-positive bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2008; 58:1961–1967 [CrossRef][PubMed]
    [Google Scholar]
  61. Wang X, Xue Y, Ma Y. Sediminibacillus albus sp. nov., a moderately halophilic, Gram-positive bacterium isolated from a hypersaline lake, and emended description of the genus Sediminibacillus Carrasco et al. 2008. Int J Syst Evol Microbiol 2009; 59:1640–1644 [CrossRef][PubMed]
    [Google Scholar]
  62. Albuquerque L, Tiago I, Rainey FA, Taborda M, Nobre MF et al. Salirhabdus euzebyi gen. nov., sp. nov., a Gram-positive, halotolerant bacterium isolated from a sea salt evaporation pond. Int J Syst Evol Microbiol 2007; 57:1566–1571 [CrossRef][PubMed]
    [Google Scholar]
  63. Ishikawa M, Ishizaki S, Yamamoto Y, Yamasato K. Paraliobacillus ryukyuensis gen. nov., sp. nov., a new Gram-positive, slightly halophilic, extremely halotolerant, facultative anaerobe isolated from a decomposing marine alga. J Gen Appl Microbiol 2002; 48:269–279 [CrossRef][PubMed]
    [Google Scholar]
  64. Niimura Y, Koh E, Yanagida F, Suzuki KI, Komagata K et al. Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic sporeforing xylan-digesting bacterium which lacks cytochrome, quinone and catalase. Int J Syst Evol Microbiol 1990; 40:297–301
    [Google Scholar]
  65. An SY, Ishikawa S, Kasai H, Goto K, Yokota A. Amphibacillus sediminis sp. nov., an endospore-forming bacterium isolated from lake sediment in Japan. Int J Syst Evol Microbiol 2007; 57:2489–2492 [CrossRef][PubMed]
    [Google Scholar]
  66. Amoozegar MA, Bagheri M, Didari M, Shahzedeh Fazeli SA, Schumann P et al. Saliterribacillus persicus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63:345–351 [CrossRef][PubMed]
    [Google Scholar]
  67. Nunes I, Tiago I, Pires AL, da Costa MS, Veríssimo A. Paucisalibacillus globulus gen. nov., sp. nov., a Gram-positive bacterium isolated from potting soil. Int J Syst Evol Microbiol 2006; 56:1841–1845 [CrossRef][PubMed]
    [Google Scholar]
  68. Albert RA, Archambault J, Lempa M, Hurst B, Richardson C et al. Proposal of Viridibacillus gen. nov. and reclassification of Bacillus arvi, Bacillus arenosi and Bacillus neidei as Viridibacillus arvi gen. nov., comb. nov., Viridibacillus arenosi comb. nov. and Viridibacillus neidei comb. nov. Int J Syst Evol Microbiol 2007; 57:2729–2737 [CrossRef][PubMed]
    [Google Scholar]
  69. Zhao B, Lu W, Zhang S, Liu K, Yan Y et al. Reclassification of Bacillus saliphilus as Alkalicoccus saliphilus gen. nov., comb. nov., and description of Alkalicoccus halolimnae sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2017; 67:1557–1563 [CrossRef][PubMed]
    [Google Scholar]
  70. Tak EJ, Kim HS, Lee JY, Kang W, Sung H et al. Virgibacillus phasianinus sp. nov., a halophilic bacterium isolated from faeces of a Swinhoe's pheasant, Lophura swinhoii. Int J Syst Evol Microbiol 2018; 68:1190–1196 [CrossRef][PubMed]
    [Google Scholar]
  71. Amoozegar MA, Bagheri M, Makhdoumi A, Mehrshad M, Didari M et al. Oceanobacillus longus sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2016; 66:4225–4230 [CrossRef][PubMed]
    [Google Scholar]
  72. Chen Y-G, Cui X-L, Zhang Y-Q, Li W-J, Wang Y-X et al. Paraliobacillus quinghaiensis sp. nov., isolated from salt-lake sediment in China. Int J Syst Evol Microbiol 2009; 59:28–33 [CrossRef][PubMed]
    [Google Scholar]
  73. Cao WR, Guo LY, Du ZJ, Das A, Saren G et al. Paraliobacillus sediminis sp. nov., isolated from East China sea sediment. Int J Syst Evol Microbiol 2017; 67:1577–1581 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004536
Loading
/content/journal/ijsem/10.1099/ijsem.0.004536
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error