1887

Abstract

A Gram-stain-negative, aerobic, non-spore-forming, motile by single polar flagellum and ovoid or rod-shaped bacterial strain, designated JBTF-M23, was isolated from tidal flat sediment collected from the Yellow Sea, Republic of Korea. Neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain JBTF-M23 fell within the clade comprising the type strains of species, clustering with the type strains of and . Strain JBTF-M23 exhibited the highest 16S rRNA gene sequence similarity value (98.6 %) to the type strain of and sequence similarities of 98.3 and 97.7 % to the type strains of and respectively. The DNA G+C content of strain JBTF-M23 from genomic sequence data was 41.98 %. The ANI and dDDH values between strain JBTF-M23 and the type strains of , and were 71.3–76.6 and 19.4–19.9 %, respectively. Strain JBTF-M23 contained Q-8 as the predominant ubiquinone and C 7 and/or C 6, C and C 7 as the major fatty acids. The major polar lipids of strain JBTF-M23 were phosphatidylethanolamine and one unidentified aminolipid. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain JBTF-M23 is separated from recognized species. On the basis of the data presented, strain JBTF-M23is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JBTF-M23(=KACC 19900=NBRC 113647).

Funding
This study was supported by the:
  • Rural Development Administration (Award PJ013743)
    • Principle Award Recipient: Jung-Hoon Yoon
  • National Institute of Biological Resources (Award project on survey of indigenous species of Korea)
    • Principle Award Recipient: Jung-Hoon Yoon
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004532
2020-11-03
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/12/6301.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004532&mimeType=html&fmt=ahah

References

  1. Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 1995; 45:755–761 [View Article][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  3. Ivanova EP, Jun Ng H, Webb HK. The Family Pseudoalteromonadaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) Gammaproteobacteria: The Prokaryotes, 4th ed. New York: Springer; 2014 pp p. 575–.582
    [Google Scholar]
  4. Navarro-Torre S, Carro L, Rodríguez-Llorente ID, Pajuelo E, Caviedes Miguel Ángel, Caviedes MA et al. Pseudoalteromonas rhizosphaerae sp. nov., a novel plant growth-promoting bacterium with potential use in phytoremediation. Int J Syst Evol Microbiol 2020; 70:3287–3294 [View Article][PubMed]
    [Google Scholar]
  5. Egan S, Holmström C, Kjelleberg S. Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. Int J Syst Evol Microbiol 2001; 51:1499–1504 [View Article][PubMed]
    [Google Scholar]
  6. Ivanova EP, Shevchenko LS, Sawabe T, Lysenko AM, Svetashev VI et al. Pseudoalteromonas maricaloris sp. nov., isolated from an Australian sponge, and reclassification of [Pseudoalteromonas aurantia] NCIMB 2033 as Pseudoalteromonas flavipulchra sp. nov. Int J Syst Evol Microbiol 2002; 52:263–271 [View Article][PubMed]
    [Google Scholar]
  7. Park Y-D, Baik KS, Yi H, Bae KS, Chun J. Pseudoalteromonas byunsanensis sp. nov., isolated from tidal flat sediment in Korea. Int J Syst Evol Microbiol 2005; 55:2519–2523 [View Article][PubMed]
    [Google Scholar]
  8. Al Khudary R, Stösser NI, Qoura F, Antranikian G. Pseudoalteromonas arctica sp. nov., an aerobic, psychrotolerant, marine bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 2008; 58:2018–2024 [View Article][PubMed]
    [Google Scholar]
  9. Matsuyama H, Sawazaki K, Minami H, Kasahara H, Horikawa K et al. Pseudoalteromonas shioyasakiensis sp. nov., a marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 2014; 64:101–106 [View Article][PubMed]
    [Google Scholar]
  10. Zhao CH, Luo JJ, Gong T, Huang XL, Ye DZ et al. Pseudoalteromonas xiamenensis sp. nov., a marine bacterium isolated from coastal surface seawater. Int J Syst Evol Microbiol 2014; 64:444–448 [View Article][PubMed]
    [Google Scholar]
  11. Park S, Jung YT, Park DS, Yoon JH. Pseudoalteromonas aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:2078–2083 [View Article][PubMed]
    [Google Scholar]
  12. Wu Y-H, Cheng H, Xu L, Jin X-B, Wang C-S et al. Physiological and genomic features of a novel violacein-producing bacterium isolated from surface seawater. PLoS One 2017; 12:e0179997 [View Article][PubMed]
    [Google Scholar]
  13. Beurmann S, Ushijima B, Svoboda CM, Videau P, Smith AM et al. Pseudoalteromonas piratica sp. nov., a budding, prosthecate bacterium from diseased Montipora capitata, and emended description of the genus Pseudoalteromonas . Int J Syst Evol Microbiol 2017; 67:2683–2688 [View Article][PubMed]
    [Google Scholar]
  14. Yoon JH, Lee ST, Kim SB, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47:111–114 [View Article]
    [Google Scholar]
  15. Yoon JH, Kim H, Kim IG, Kang KH, Park YH. Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 2003; 53:1169–1174 [View Article][PubMed]
    [Google Scholar]
  16. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  17. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  18. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed]
    [Google Scholar]
  19. Yoon SH, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  21. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  23. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article][PubMed]
    [Google Scholar]
  24. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp pp. 121–.161
    [Google Scholar]
  28. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [View Article][PubMed]
    [Google Scholar]
  29. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Mocrobiol 1987; 19:1–67
    [Google Scholar]
  30. Bruns A, Rohde M, Berthe-Corti L. Muricauda tuestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  31. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  32. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes . In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. (editors) The Prokaryotes Berlin: Springer; 1981 pp 1302–1331
    [Google Scholar]
  33. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J Cell Comp Physiol 1957; 49:25–68 [View Article][PubMed]
    [Google Scholar]
  34. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95:1921–1942 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004532
Loading
/content/journal/ijsem/10.1099/ijsem.0.004532
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error