1887

Abstract

A Gram-stain-positive, aerobic actinobacterium, designated strain CBS5P-1, was isolated from bark of Linn collected from Guangxi Zhuang Autonomous Region, PR China. Cells were short rods. Colonies were light yellow, circular and had entire margins. Strain CBS5P-1 grew at 10–37 °C (optimum, 30 °C) and pH 6.0–12.0 (optimum, pH 7.0–8.0). Its nearest phylogenetic neighbour was DSM 24221 with 97.1 % 16S rRNA gene sequence similarity. The genomic DNA G+C content of strain CBS5P-1 was 71.8 mol%. Anteiso-C, anteiso-C, iso-C and C were predominant cellular fatty acids. Major menaquinones were MK-11 and MK-10. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid and an unidentified phospholipid. The combination of chemotaxonomic, phylogenetic and phenotypic data clearly distinguished strain CBS5P-1 from its phylogenetic neighbour. Accordingly, the name sp. nov. is proposed to accommodate this new member of the genus . The type strain is CBS5P-1 (=KCTC 49239=CGMCC 1.13862).

Funding
This study was supported by the:
  • Li Tuo , Science and Technology Foundation of Health Commission of Guizhou Province , (Award gzwjkj2019-1-177)
  • Li Tuo , Science and Technology Foundation of Guizhou Province , (Award Qian Ke He Jichu [2019]1347)
  • Li Tuo , Opening Project of Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry , (Award GXMNPC2020002)
  • Li Tuo , the National Natural Science Foundation of China , (Award 81603079)
  • Li Tuo , the National Natural Science Foundation of China , (Award 81960642)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004523
2020-10-16
2020-10-25
Loading full text...

Full text loading...

References

  1. Orla-Jensen S. The Lactic Acid Bacteria Copenhagen: Høst and Son; 1919
    [Google Scholar]
  2. Collins MD, Jones D, Kroppenstedt RM. Reclassification of Brevibacterium imperiale (Steinhaus) and 'Corynebacterium laevaniformans' (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev. Syst Appl Microbiol 1983; 4:65–78 [CrossRef][PubMed]
    [Google Scholar]
  3. Takeuchi M, Hatano K. Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 1998; 48:739–747 [CrossRef][PubMed]
    [Google Scholar]
  4. Krishnamurthi S, Bhattacharya A, Schumann P, Dastager SG, Tang SK et al. Microbacterium immunditiarum sp. nov., an actinobacterium isolated from landfill surface soil, and emended description of the genus Microbacterium. Int J Syst Evol Microbiol 2012; 62:2187–2193 [CrossRef][PubMed]
    [Google Scholar]
  5. Alves A, Correia A, Igual JM, Trujillo ME. Microbacterium endophyticum sp. nov. and Microbacterium halimionae sp. nov., endophytes isolated from the salt-marsh plant Halimione portulacoides and emended description of the genus Microbacterium. Syst Appl Microbiol 2014; 37:474–479 [CrossRef][PubMed]
    [Google Scholar]
  6. Fidalgo C, Riesco R, Henriques I, Trujillo ME, Alves A. Microbacterium diaminobutyricum sp. nov., isolated from Halimione portulacoides, which contains diaminobutyric acid in its cell wall, and emended description of the genus Microbacterium. Int J Syst Evol Microbiol 2016; 66:4492–4500 [CrossRef][PubMed]
    [Google Scholar]
  7. Collins MD, Bradbury JF. The genera Agromyces, Aureobacterium, Clavibacter, Curtobacterium, and Microbacterium. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes, 2nd ed. Berlin: Springer; 1992 pp 1355–1368
    [Google Scholar]
  8. Richert K, Brambilla E, Stackebrandt E. The phylogenetic significance of peptidoglycan types: molecular analysis of the genera Microbacterium and Aureobacterium based upon sequence comparison of gyrB, rpoB, recA and ppk and 16SrRNA genes. Syst Appl Microbiol 2007; 30:102–108 [CrossRef][PubMed]
    [Google Scholar]
  9. Dastager SG, Lee JC, Ju YJ, Park D-J, Kim CJ. Microbacterium kribbense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2008; 58:2536–2540 [CrossRef][PubMed]
    [Google Scholar]
  10. Madhaiyan M, Poonguzhali S, Lee JS, Lee KC, Saravanan VS et al. Microbacterium azadirachtae sp. nov., a plant-growth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. Int J Syst Evol Microbiol 2010; 60:1687–1692 [CrossRef][PubMed]
    [Google Scholar]
  11. Kämpfer P, Schäfer J, Lodders N, Martin K. Microbacterium murale sp. nov., isolated from an indoor wall. Int J Syst Evol Microbiol 2012; 62:2669–2673 [CrossRef][PubMed]
    [Google Scholar]
  12. Li F, Gao C, Zhu L, Yu L, Qin M et al. [Diversity and cytotoxic activity of endophytic bacteria isolated from Sonneratia apetala of Maowei Sea]. Wei Sheng Wu Xue Bao 2016; 56:689-–697[PubMed]
    [Google Scholar]
  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [CrossRef]
    [Google Scholar]
  14. Waksman SA. The Actinomycetes. Classification, Identification and Description of Genera and Species 2 Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  15. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  16. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  17. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  18. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  19. Tuo L, Yan XR, Li FN, Bao YX, Shi HC et al. Brachybacterium endophyticum sp. nov., a novel endophytic actinobacterium isolated from bark of Scutellaria baicalensis Georgi. Int J Syst Evol Microbiol 2018; 68:3563–3568 [CrossRef][PubMed]
    [Google Scholar]
  20. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  21. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [CrossRef][PubMed]
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  23. WJ L, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., anovel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst EvolMicrobiol 2007; 57:1424–1428
    [Google Scholar]
  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura S, Stecher G, Tamura K. MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2015:
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  31. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [CrossRef]
    [Google Scholar]
  32. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  34. Anand S, Bala K, Saxena A, Schumann P, Lal R. Microbacterium amylolyticum sp. nov., isolated from soil from an industrial waste site. Int J Syst Evol Microbiol 2012; 62:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004523
Loading
/content/journal/ijsem/10.1099/ijsem.0.004523
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error