1887

Abstract

Three Gram-stain-negative, non-motile, rod-shaped strains, designated 72, NH166 and 40DY170, were isolated from seawater samples of the West Pacific Ocean, South China Sea and West Pacific Ocean, respectively. The 16S rRNA gene sequence similarity results revealed that strains 72and NH166 were most closely related to Ar-22, JCM 17757, KCTC 23501, KCTC 22173 and MT-229 with 97.2–98.0% sequence similarity. 16S rRNA gene sequence analysis also indicated that strain 40DY170 was most closely related to DSM 13258, JCM 11811, KCTC 22173 and 501str8 with 97.6–98.1% sequence similarity. The 16S rRNA gene sequence similarity values among strains 72, NH166 and 40DY170 were 96.5–99.2%. Phylogenetic analyses indicated that three new isolates represented three novel species by forming two distinctive lineages within the genus . The DNA G+C contents of strain 72, NH166 and 40DY170 were 43.4, 43.4 and 42.4 mol%, respectively. The average nucleotide identity and DNA–DNA hybridization values between strains 72, NH166, 40DY170 and the reference strains were 76.5–93.5% and 19.2–53.5%, respectively. The sole respiratory quinone in all strains was menaquinone-6. Their major fatty acids were iso-C 3-OH, iso-C and iso-C G. The major polar lipids of strains 72 and NH166 were phosphatidylethanolamine, one unidentified aminolipid and two unidentified lipids. The major polar lipids of strain 40DY170 were phosphatidylglycerol, one unidentified phospholipid, one unidentified aminolipid and two unidentified lipids. On the basis of their distinct taxonomic characteristics, the three isolates represent three novel species of the genus , for which the names sp. nov. (type strain 72=KCTC 62229=MCCC 1K03350), sp. nov. (NH166=KCTC 62228=MCCC 1K03449) and sp. nov. (40DY170=KCTC 72200=MCCC 1K03569) are proposed.

Funding
This study was supported by the:
  • Ningbo Public Service Platform for High-Value Utilization of Marine Biological Resources (Award NBHY-2017-P2)
    • Principle Award Recipient: Yuehong Wu
  • the National Natural Science Foundation of China (Award 41876182)
    • Principle Award Recipient: Yuehong Wu
  • the Scientific Research Fund of the Second Institute of Oceanography, MNR (Award JT1702)
    • Principle Award Recipient: Yuehong Wu
  • China Ocean Mineral Resources R & D Association (COMRA) Special Foundation (Award DY135-B2-10)
    • Principle Award Recipient: Yuehong Wu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004522
2020-10-23
2021-10-16
Loading full text...

Full text loading...

References

  1. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  2. Yoon JH, Lee MH, Oh TK, Park YH. Muricauda flavescens sp. nov. and Muricauda aquimarina sp. nov., isolated from a salt lake near Hwajinpo Beach of the East Sea in Korea, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2005; 55:1015–1019 [View Article][PubMed]
    [Google Scholar]
  3. Hwang CY, Kim MH, Bae GD, Zhang GI, Kim YH et al. Muricauda olearia sp. nov., isolated from crude-oil-contaminated seawater, and emended description of the genus Muricauda . Int J Syst Evol Microbiol 2009; 59:1856–1861 [View Article][PubMed]
    [Google Scholar]
  4. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  5. Wu YH, Yu PS, Zhou YD, Xu L, Wang CS et al. Muricauda antarctica sp. nov., a marine member of the Flavobacteriaceae isolated from Antarctic seawater. Int J Syst Evol Microbiol 2013; 63:3451–3456 [View Article][PubMed]
    [Google Scholar]
  6. Zhang X, Liu X, Lai Q, Du Y, Sun F, Shao Z et al. Muricauda indica sp. nov., isolated from deep sea water. Int J Syst Evol Microbiol 2018; 68:881–885 [View Article][PubMed]
    [Google Scholar]
  7. Zhang Z, Gao X, Qiao Y, Wang Y, Zhang XH. Muricauda pacifica sp. nov., isolated from seawater of the South Pacific Gyre. Int J Syst Evol Microbiol 2015; 65:4087–4092 [View Article][PubMed]
    [Google Scholar]
  8. Arun AB, Chen WM, Lai WA, Chao JH, Rekha PD et al. Muricauda lutaonensis sp. nov., a moderate thermophile isolated from a coastal hot spring. Int J Syst Evol Microbiol 2009; 59:2738–2742 [View Article][PubMed]
    [Google Scholar]
  9. Lee SY, Park S, Oh TK, Yoon JH. Muricauda beolgyonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62:1134–1139 [View Article][PubMed]
    [Google Scholar]
  10. Yoon JH, Kang SJ, Jung YT, Oh TK. Muricauda lutimaris sp. nov., isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 2008; 58:1603–1607 [View Article][PubMed]
    [Google Scholar]
  11. Kim JM, Jin HM, Jeon CO. Muricauda taeanensis sp. nov., isolated from a marine tidal flat. Int J Syst Evol Microbiol 2013; 63:2672–2677 [View Article][PubMed]
    [Google Scholar]
  12. Liu SQ, Sun QL, Sun YY, Yu C, Sun L. Muricauda iocasae sp. nov., isolated from deep sea sediment of the South China Sea. Int J Syst Evol Microbiol 2018; 68:2538–2544 [View Article][PubMed]
    [Google Scholar]
  13. Yang C, Li Y, Guo Q, Lai Q, Wei J et al. Muricauda zhangzhouensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2013; 63:2320–2325 [View Article][PubMed]
    [Google Scholar]
  14. Liu L, Yu M, Zhou S, Fu T, Sun W et al. Muricauda alvinocaridis sp. nov., isolated from shrimp gill from the Okinawa Trough. Int J Syst Evol Microbiol 2020; 70:1666–1671 [View Article][PubMed]
    [Google Scholar]
  15. Park JS. Muricauda hymeniacidonis sp. nov., isolated from sponge of Hymeniacidon sinapium . Int J Syst Evol Microbiol 2019; 69:3800–3805 [View Article][PubMed]
    [Google Scholar]
  16. Bernardet JF et al. Order I. Flavobacteriales ord. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 4: The Bacteroidetes New York: Springer; 2010 p 105
    [Google Scholar]
  17. Dong B, Zhu S, Chen T, Ren N, Chen X et al. Muricauda oceani sp. nov., isolated from the East Pacific Ocean. Int J Syst Evol Microbiol 2020; 70:3839–3844 [View Article][PubMed]
    [Google Scholar]
  18. Zhang Y, Gao Y, Pei J, Cao J, Xie Z et al. Muricauda hadalis sp. nov., a novel piezophile isolated from hadopelagic water of the Mariana Trench and reclassification of Muricauda antarctica as a later heterotypic synonym of Muricauda teanensis . Int J Syst Evol Microbiol 2020; 70:4315–4320 [View Article][PubMed]
    [Google Scholar]
  19. Mac Faddin JF. Biochemical Tests for Identification of Medical Bacteria Baltimore, MD: Williams & Wilkins; 1976
    [Google Scholar]
  20. Huang MM, Guo LL, Wu YH, Lai QL, Shao ZZ et al. Pseudooceanicola lipolyticus sp. nov., a marine alphaproteobacterium, reclassification of Oceanicola flagellatus as Pseudooceanicola flagellatus comb. nov. and emended description of the genus Pseudooceanicola . Int J Syst Evol Microbiol 2018; 68:409–415 [View Article][PubMed]
    [Google Scholar]
  21. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  22. Rainey FA, Silva J, Nobre MF, Silva MT, da Costa MS. Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. Int J Syst Evol Microbiol 2003; 53:35–41 [View Article][PubMed]
    [Google Scholar]
  23. Hildebrand DC, Palleroni NJ, Hendson M, Toth J, Johnson JL. Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. Int J Syst Bacteriol 1994; 44:410–415 [View Article][PubMed]
    [Google Scholar]
  24. Farmer III JJ, Janda JM, Brenner FW, Cameron DN, Birkhead KM et al. Genus I. Vibrio Pacini 1854, 411AL . In Garrity GM, Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed, vol. 2, The Proteobacteria, Part B, The Gammaproteobacteria New York: Springer; 2005 p 494
    [Google Scholar]
  25. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184 [View Article][PubMed]
    [Google Scholar]
  26. Guo LL, Wu YH, Xu XW, Huang CJ, Xu YY et al. Actibacterium pelagium sp. nov., a novel alphaproteobacterium, and emended description of the genus Actibacterium . Int J Syst Evol Microbiol 2017; 67:5080–5086 [View Article][PubMed]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  29. Komagata K, Susuki K. Lipid and cell-wall systematics in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  30. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  31. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article][PubMed]
    [Google Scholar]
  32. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  34. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  35. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  37. Xu L, Wu YH, Zhou P, Cheng H, Liu Q et al. Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis. BMC Genomics 2018; 19:385 [View Article][PubMed]
    [Google Scholar]
  38. Xu L, Ye KX, Dai WH, Sun C, Xu LH et al. Comparative genomic insights into secondary metabolism biosynthetic gene cluster distributions of marine Streptomyces . Mar Drugs 2019; 17:498 [View Article][PubMed]
    [Google Scholar]
  39. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124 [View Article][PubMed]
    [Google Scholar]
  40. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article][PubMed]
    [Google Scholar]
  41. Wang XJ, Xu L, Wang N, Sun HM, Chen XL et al. Putridiphycobacter roseus gen. nov., sp. nov., isolated from Antarctic rotten seaweed. Int J Syst Evol Microbiol 2020; 70:648–655 [View Article][PubMed]
    [Google Scholar]
  42. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  43. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  44. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  45. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  46. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  47. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  48. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [View Article][PubMed]
    [Google Scholar]
  49. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  50. Moore L, Moore E, Murray R, Stackebrandt E, Starr M. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  51. Hassan MT, van der Lelie D, Springael D, Römling U, Ahmed N et al. Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa . Gene 1999; 238:417–425 [View Article][PubMed]
    [Google Scholar]
  52. Brown NL, Stoyanov JV, Kidd SP, Hobman JL. The MerR family of transcriptional regulators. FEMS Microbiol Rev 2003; 27:145–163 [View Article][PubMed]
    [Google Scholar]
  53. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004522
Loading
/content/journal/ijsem/10.1099/ijsem.0.004522
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error