1887

Abstract

An endophytic actinobacterium, strain CLES2, was discovered from the surface-sterilized stem of a Thai medicinal plant, Burm. f., collected from the Phujong-Nayoa National Park, Ubon Ratchathani Province, Thailand. The results of a polyphasic taxonomic study identified this strain as a member of the genus and a Gram-stain-positive, aerobic actinobacterium. It had well-developed substrate mycelia, which were non-motile and possessed paired spores. A phylogenetic evaluation based on 16S rRNA gene sequence analysis placed this strain in the family , being most closely related to NEAU-TX2-2 (99.4 %), 2C-HV3 (99.2 %), CR1-09 (99.2 %) and JCM 3021 and NEAU-HEGS1-5 (both at 99.1 %). The major cellular fatty acid of this strain was iso-C and major menaquinone was MK-9(H). The polar lipid profile of strain CLES2 contained diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylinositol and phosphatidylinositol dimannosides. These chemotaxonomic data confirmed the affiliation of strain CLES2 to the genus . The DNA G+C content of this strain was 70 mol%. Digital DNA–DNA hybridization and average nucleotide identity values between strain CLES2 and CR1-09 were 62.4 and 94.0 %, respectively. The results of the polyphasic study allowed the genotypic and phenotypic differentiation of strain CLES2 from its closest species with valid names. The name proposed for the new species is sp. nov. The type strain is CLES2 (=DSM 101759=NRRL B-65340).

Funding
This study was supported by the:
  • Office of the Higher Education Commission (Award contract number MRG5580168)
    • Principle Award Recipient: Onuma Kaewkla
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004518
2020-10-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/12/6213.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004518&mimeType=html&fmt=ahah

References

  1. Nonomura H, Ohara Y. Distribution of actinomycetes in the soil. II. Microbispora, a new genus of the Streptomycetaceae . J Ferment Technol 1957; 35:307–311
    [Google Scholar]
  2. Franco CMM. Genus IV. Microbispora Nonomura and Ohara 1957, 307AL emend. Zhang, Wang and Ruan 1998a, 418. In Whitman WB, Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME et al. (editors) Bergey’s Manual of Systematic Bacteriology 4, 2nd ed. New York: Springer; 2012 p 1750
    [Google Scholar]
  3. Miyadoh S, Amano S, Tohyama H, Shomura T. A taxonomic review of the genus Microbispora and a proposal to transfer two species to the genus Actinomadura and to combine ten species into Microbispora rosea. J Gen Microbiol 1990; 136:1905–1913 [View Article][PubMed]
    [Google Scholar]
  4. Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T. Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 1999; 49:1761–1767 [View Article][PubMed]
    [Google Scholar]
  5. Boondaeng A, Ishida Y, Tamura T, Tokuyama S, Kitpreechavanich V. Microbispora siamensis sp. nov., a thermotolerant actinomycete isolated from soil. Int J Syst Evol Microbiol 2009; 59:3136–3139 [View Article][PubMed]
    [Google Scholar]
  6. Xu XX, Wang H-L, Lin H-P, Wang C, Qu Z et al. Microbispora hainanensis sp. nov., isolated from rhizosphere soil of Excoecaria agallocha in a mangrove. Int J Syst Evol Microbiol 2012; 62:2430–2434 [View Article][PubMed]
    [Google Scholar]
  7. Kittisrisopit S, Pittayakhajonwut P, Tadtong S, Thawai C. Microbispora soli sp. nov., isolated from soil of a hot spring. Int J Syst Evol Microbiol 2018; 68:3863–3868 [View Article][PubMed]
    [Google Scholar]
  8. Li C, Zhang Y, Liu C, Wang H, Zhao J et al. Microbispora bryophytorum sp. nov., an actinomycete isolated from moss (Bryophyta). Int J Syst Evol Microbiol 2015; 65:1274–1279 [View Article][PubMed]
    [Google Scholar]
  9. Klykleung N, Yuki M, Kudo T, Ohkuma M, Phongsopitanun W et al. Microbispora catharanthi sp. nov., a novel endophytic actinomycete isolated from the root of Catharanthus roseus . Int J Syst Evol Microbiol 2020; 70:964–970 [View Article][PubMed]
    [Google Scholar]
  10. Han C, Tian Y, Zhao J, Yu Z, Jiang S et al. Microbispora triticiradicis sp. nov., a novel actinomycete isolated from the root of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2018; 68:3600–3605 [View Article][PubMed]
    [Google Scholar]
  11. Han C, Zhao J, Yu B, Shi H, Zhang C et al. Microbispora tritici sp. nov., a novel actinomycete isolated from a root of wheat (Triticum aestivum L.). Antonie van Leeuwenhoek 2019; 112:1137–1145 [View Article][PubMed]
    [Google Scholar]
  12. Zhao J, Yu B, Han C, Cao P, Yu Z et al. Microbispora fusca sp. nov., a novel actinomycete isolated from the ear of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2020; 70:139–145 [View Article][PubMed]
    [Google Scholar]
  13. Han C, Liu C, Zhao J, Guo L, Lu C et al. Microbispora camponoti sp. nov., a novel actinomycete isolated from the cuticle of Camponotus japonicus Mayr. Antonie van Leeuwenhoek 2016; 109:215–223 [View Article][PubMed]
    [Google Scholar]
  14. Kaewkla O, Franco CMM. Rational approaches to improving the isolation of endophytic actinobacteria from Australian native trees. Microb Ecol 2013; 65:384–393 [View Article][PubMed]
    [Google Scholar]
  15. Schoenborn L, Yates PS, Grinton BE, Hugenholtz P, Janssen PH. Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl Environ Microbiol 2004; 70:4363–4366 [View Article][PubMed]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  17. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  19. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article][PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  23. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article][PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  26. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article][PubMed]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  29. Kim M, Oh HS, Park SC, Chun J, HS O, Jongsik C. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  31. Hasegawa T, Takisawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  32. Bousfield IJ, Keddie RM, Shaw S. Simple rapid methods of cell wall analysis as an aid in the identification of aerobic coryneform bacteria. Chemical method in bacterial Systematics. Technical Series 1985; 20:221–236
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  35. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  36. Kaewkla O, Franco CMM. Actinomycetospora callitridis sp. nov., an endophytic actinobacterium isolated from the surface-sterilised root of an Australian native pine tree. Antonie van Leeuwenhoek 2019; 112:331–337 [View Article][PubMed]
    [Google Scholar]
  37. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical note# 101. 2001
    [Google Scholar]
  38. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  39. Atlas RM. Handbook of Microbiological Media . In Parks LC. editor Boca Raton: CRC Press; 1993
  40. Kornerup J, Wanscher H. Methuen Handbook of Colour . In Pavey DF. editor , 3rd ed. Norfolk, Cox & Wyman Ltd; 1978
  41. Gordon RE, Barnett DA, Handerhan JE, Pang CH. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  42. Kurup KV, Schmitt JA. Numerical taxonomy of Nocardia . Can J Microbiol 1973; 19:1035–1048 [View Article]
    [Google Scholar]
  43. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004518
Loading
/content/journal/ijsem/10.1099/ijsem.0.004518
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error