1887

Abstract

sp. strain Sp245, originally identified as belonging to , is recognized as a plant-growth-promoting rhizobacterium due to its ability to fix atmospheric nitrogen and to produce plant-beneficial compounds. sp. Sp245 and other related strains were isolated from the root surfaces of different plants in Brazil. Cells are Gram-negative, curved or slightly curved rods, and motile with polar and lateral flagella. Their growth temperature varies between 20 to 38 °C and their carbon source utilization is similar to other species. A preliminary 16S rRNA sequence analysis showed that the new species is closely related to Sp7 and CC-Nfb-7. Housekeeping genes revealed that sp. Sp245, BR 12001 and Vi22 form a separate cluster from strain CC-Nfb-7, and a group of strains closely related to Sp7. Overall genome relatedness index (OGRI) analyses estimated based on average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) between sp. Sp245 and its close relatives to other species type strains, such as Sp7 and CC-Nfb-7 revealed values lower than the limit of species circumscription. Moreover, core-proteome phylogeny including 1079 common shared proteins showed the independent clusterization of Sp7, CC-Nfb-7 and sp. Sp245, a finding that was corroborated by the genome clustering of OGRI values and housekeeping phylogenies. The DNA G+C content of the cluster of Sp245 was 68.4–68.6 %. Based on the phylogenetic, genomic, phenotypical and physiological analysis, we propose that strain Sp245 together with the strains Vi22 and BR12001 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Sp245 (=BR 11005=IBPPM 219) (GCF_007827915.1, GCF_000237365.1, and GCF_003119195.2).

Funding
This study was supported by the:
  • Natalia Ferreira , CAPES
  • Natalia Ferreira , CNPq
  • Natalia Ferreira , Embrapa
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004517
2020-10-16
2020-11-25
Loading full text...

Full text loading...

References

  1. Tarrand JJ, Krieg NR, Döbereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 1978; 24:967–980 [CrossRef][PubMed]
    [Google Scholar]
  2. Lin SY, Hameed A, Shen FT, Liu YC, Hsu YH et al. Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie van Leeuwenhoek 2014; 105:1149–1162 [CrossRef][PubMed]
    [Google Scholar]
  3. Cassán F, Coniglio A, López G et al. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol Fertil Soils 2020
    [Google Scholar]
  4. Fukami J, Nogueira MA, Araujo RS, Hungria M. Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 2016; 6:3 [CrossRef][PubMed]
    [Google Scholar]
  5. Fukami J, Cerezini P, Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 2018; 8:73 [CrossRef][PubMed]
    [Google Scholar]
  6. Day JM, Döbereiner J. Physiological aspects of N2-fixation by a Spirillum from Digitaria roots. Soil Biol Biochem 1976; 8:45–50 [CrossRef]
    [Google Scholar]
  7. Reynders L, Vlassak K. Conversion of tryptophan to indoleacetic acid by Azospirillum brasilense. Soil Biol Biochem 1979; 11:547–548 [CrossRef]
    [Google Scholar]
  8. Tien TM, Gaskins MH, Hubbell DH. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 1979; 37:1016–1024 [CrossRef][PubMed]
    [Google Scholar]
  9. Hungria M, Campo RJ, Souza EM, Pedrosa FO. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 2010; 331:413–425 [CrossRef]
    [Google Scholar]
  10. Baldani VLD, Baldani JI, Döbereiner J. Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can J Microbiol 1983; 29:924–929 [CrossRef]
    [Google Scholar]
  11. Baldani VLD, Alvarez MAdeB, Baldani JI, Döbereiner J. Establishment of inoculated Azospirillum spp. in the Rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 1986; 90:35–46 [CrossRef]
    [Google Scholar]
  12. Cassán F, Diaz-Zorita M. Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 2016; 103:117–130 [CrossRef]
    [Google Scholar]
  13. Schloter M, Hartmann A. Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies. Symbiosis 1998; 25:425–431
    [Google Scholar]
  14. Maroniche GA, García JE, Salcedo F, Creus CM. Molecular identification of Azospirillum spp.: Limitations of 16S rRNA and qualities of rpoD as genetic markers. Microbiol Res 2017; 195:1–10 [CrossRef][PubMed]
    [Google Scholar]
  15. Hartmann A, Fischer D, Kinzel L, Chowdhury SP, Hofmann A et al. Assessment of the structural and functional diversities of plant microbiota: Achievements and challenges - A review. J Adv Res 2019; 19:3–13 [CrossRef][PubMed]
    [Google Scholar]
  16. Stets MI, Pinto AS, Huergo LF, de Souza EM, Guimarães VF et al. Rapid identification of bacterial isolates from wheat roots by high resolution whole cell MALDI-TOF MS analysis. J Biotechnol 2013; 165:167–174 [CrossRef][PubMed]
    [Google Scholar]
  17. Lin SY, Shen FT, Young LS, Zhu ZL, Chen WM et al. Azospirillum formosense sp. nov., a diazotroph from agricultural soil. Int J Syst Evol Microbiol 2012; 62:1185–1190 [CrossRef][PubMed]
    [Google Scholar]
  18. Leite J, Passos SR, Simões-Araújo JL, Rumjanek NG, Xavier GR et al. Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Braz J Microbiol 2018; 49:703–713 [CrossRef][PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  20. Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 1996; 12:543–548 [CrossRef][PubMed]
    [Google Scholar]
  21. Ambrosini A, Beneduzi A, Stefanski T, Pinheiro FG, Vargas LK et al. Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 2012; 356:245–264 [CrossRef]
    [Google Scholar]
  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  23. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. OMICS 2008; 12:137–141 [CrossRef][PubMed]
    [Google Scholar]
  24. Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies version 1;peer review:2 approved with reservations. F1000Research 2017; 6:1287
    [Google Scholar]
  25. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [CrossRef][PubMed]
    [Google Scholar]
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [CrossRef]
    [Google Scholar]
  27. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [CrossRef]
    [Google Scholar]
  28. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [CrossRef][PubMed]
    [Google Scholar]
  29. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  30. Sant'Anna FH, Ambrosini A, de Souza R, de Carvalho Fernandes G, Bach E et al. Reclassification of Paenibacillus riograndensis as a Genomovar of Paenibacillus sonchi: genome-based metrics improve bacterial taxonomic classification. Front Microbiol 2017; 8:8 [CrossRef][PubMed]
    [Google Scholar]
  31. Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L et al. Microscope: a platform for microbial genome annotation and comparative genomics. Database 2009; 2009:bap021 [CrossRef][PubMed]
    [Google Scholar]
  32. Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal, Complex Systems 2006; 1695:1–9
    [Google Scholar]
  33. Allaire JJ, Ellis P, Gandrud C, Kuo K, Lewis BW et al. Package networkD3; D3 JavaScript Network Graphs from RR (> = 3.0.0); 2017
  34. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852–1863 [CrossRef][PubMed]
    [Google Scholar]
  35. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  36. Palmer M, Steenkamp ET, Blom J, Hedlund BP, Venter SN. All ANIs are not created equal: implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy published online ahead of print, 2020 [Apr 3]. Int J Syst Evol Microbiol 2020:
    [Google Scholar]
  37. Rosselló-Móra R, Amann R. Past and future species definitions for bacteria and archaea. Syst Appl Microbiol 2015; 38:209–216 [CrossRef][PubMed]
    [Google Scholar]
  38. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [CrossRef][PubMed]
    [Google Scholar]
  39. Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 2000; 24:487–506 [CrossRef][PubMed]
    [Google Scholar]
  40. Cassán F, Vanderleyden J, Spaepen S. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 2014; 33:440–459 [CrossRef]
    [Google Scholar]
  41. Kovtunov EA, Shelud'ko AV, Chernyshova MP, Petrova LP, Katsy EI. [Mutants of bacterium Azospirillum brasilense Sp245 with Omegon insertion in mmsB or fabG genes of lipid metabolism are defective in motility and flagellation]. Genetika 2013; 49:1107–1111 [CrossRef][PubMed]
    [Google Scholar]
  42. Baldani JI, Videira SS, Teixeira KR, Reis VM et al. The family Rhodospirillaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes Berlin, Heidelberg: Springer; 2014 pp 533–618
    [Google Scholar]
  43. Ona O, Van Impe J, Prinsen E, Vanderleyden J. Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiology Lett 2005; 246:1:125–1:132
    [Google Scholar]
  44. Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M et al. Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 2005; 221:297–303 [CrossRef]
    [Google Scholar]
  45. Z, Alves BJR, Rouws LFM et al. The importance of denitrification performed by nitrogen-fixing bacteria used as inoculants in South America. Plant Soil 2019
    [Google Scholar]
  46. Michel DC, Passos SR, Simões-Araujo JL, Baraúna AC, da Silva K et al. Bradyrhizobium centrolobii and Bradyrhizobium macuxiense sp. nov. isolated from Centrolobium paraense grown in soil of Amazonia, Brazil. Arch Microbiol 2017; 199:657–664 [CrossRef][PubMed]
    [Google Scholar]
  47. Rodrigues Neto J, Malavolta Júnior VA, Victor O. Meio simples para o isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathologica 1986; 12:16
    [Google Scholar]
  48. Lavrinenko K, Chernousova E, Gridneva E, Dubinina G, Akimov V et al. Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. Int J Syst Evol Microbiol 2010; 60:2832–2837 [CrossRef][PubMed]
    [Google Scholar]
  49. Tikhonova EN, Grouzdev DS, Kravchenko IK. Azospirillum palustre sp. nov., a methylotrophic nitrogen-fixing species isolated from raised bog. Int J Syst Evol Microbiol 2019; 69:2787–2793 [CrossRef][PubMed]
    [Google Scholar]
  50. Zhou S, Han L, Wang Y, Yang G, Zhuang L et al. Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 2013; 63:2618–2624 [CrossRef][PubMed]
    [Google Scholar]
  51. Lu YK, Marden J, Han M, Swingley WD, Mastrian SD et al. Metabolic flexibility revealed in the genome of the cyst-forming alpha-1 proteobacterium Rhodospirillum centenum. BMC Genom 2010; 11:325 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004517
Loading
/content/journal/ijsem/10.1099/ijsem.0.004517
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error