1887

Abstract

A novel Gram-stain-negative, aerobic, non-spore-forming, non-motile, and rod-shaped bacterium, strain ETT8 was isolated from a chemostat culture of microalga sp. YC001. Optimal growth was with 0–2% NaCl and at 25–37 °C on R2A medium. Phylogenetic analysis based on the 16S rRNA gene and genome sequence showed that strain ETT8 belongs to the genus , with the close neighbours being DRYC-M-16 (98.1 %), DJC (97.6 %), SY72 (96.9 %), K13M18 (96.8 %), and RCRI19 (96.5 %). The genomic comparison of strain ETT8 with type species in the genus was analysed using the genome-to-genome distance calculator (GGDC), average nucleotide identity (ANI), and average amino acid identity (AAI) (values indicated ≤17.7, ≤75.4 and ≤71.9 %, respectively). The genomic DNA G+C content of strain ETT8 was 64.4 %, plus C c and C-iso were the major fatty acids and Q-10 the major respiratory quinone. Strain ETT8 contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine aminolipid, and four unidentified lipids as the major polar lipids. Based on the chemotaxonomic, genotypic, and phenotype results, strain ETT8 was recognized as a novel species of the genus for which the name sp. nov. is proposed. The type strain is ETT8 (=KCTC 72206=JCM 31893=MCC 4339).

Funding
This study was supported by the:
  • National Institute of Environment Research (Award NIER-2019-04-02-060)
    • Principle Award Recipient: Chi-Yong Ahn
  • Korea Research Fellowship program (Award 2015H1D3A1060001)
    • Principle Award Recipient: Yingshun Cui
  • National Research Foundation of Korea (Award 2019R1A2C2007038)
    • Principle Award Recipient: Chi-Yong Ahn
  • National Research Foundation of Korea (Award 2016M1A5A1027453)
    • Principle Award Recipient: Hee-Mock Oh
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004508
2020-10-14
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/12/6133.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004508&mimeType=html&fmt=ahah

References

  1. Fuentes JL, Garbayo I, Cuaresma M, Montero Z, González-Del-Valle M et al. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar Drugs 2016; 14:100 [View Article][PubMed]
    [Google Scholar]
  2. Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 2012; 76:667–684 [View Article][PubMed]
    [Google Scholar]
  3. Seymour JR, Amin SA, Raina J-B, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol 2017; 2:17065 [View Article][PubMed]
    [Google Scholar]
  4. Cui Y, Jin L, Ko S-R, Chun S-J, Oh H-S et al. Periphyton effects on bacterial assemblages and harmful cyanobacterial blooms in a eutrophic freshwater lake: a mesocosm study. Sci Rep 2017; 7:1–11 [View Article]
    [Google Scholar]
  5. Tarhriz V, Eyvazi S, Shakeri E, Hejazi MS, Dilmaghani A. Antibacterial and antifungal activity of novel freshwater bacterium Tabrizicola aquatica as a prominent natural antibiotic available in grügol lake. Pharma Sci 2020; 26:88–92
    [Google Scholar]
  6. Pegg C, Wolf M, La A, Portman R, Buchheim MA. Morphological diversity masks phylogenetic similarity of Ettlia and Haematococcus (Chlorophyceae). Phycologia 2015; 54:385–397
    [Google Scholar]
  7. Yoo C, Choi GG, Kim SC, Oh HM. Ettlia sp. YC001 showing high growth rate and lipid content under high CO2 . Bioresour Technol 2013; 127:482–488 [View Article][PubMed]
    [Google Scholar]
  8. Vu CHT, Chun SJ, Seo SH, Cui Y, Ahn CY et al. Bacterial community enhances flocculation efficiency of Ettlia sp. by altering extracellular polymeric substances profile. Bioresour Technol 2019; 281:56–65 [View Article][PubMed]
    [Google Scholar]
  9. Tarhriz V, Thiel V, Nematzadeh G, Hejazi MA, Imhoff JF et al. Tabrizicola aquatica gen. nov. sp. nov., a novel alphaproteobacterium isolated from Qurugöl Lake nearby Tabriz city, Iran. Antonie van Leeuwenhoek 2013; 104:1205–1215 [View Article][PubMed]
    [Google Scholar]
  10. Ko DJ, Kim JS, Park DS, Lee DH, Heo SY et al. Tabrizicola fusiformis sp. nov., isolated from an industrial wastewater treatment plant. Int J Syst Evol Microbiol 2018; 68:1800–1805 [View Article][PubMed]
    [Google Scholar]
  11. Liu ZX, Dorji P, Liu HC, Li AH, Zhou YG. Tabrizicola sediminis sp. nov., one aerobic anoxygenic photoheterotrophic bacteria from sediment of saline lake. Int J Syst Evol Microbiol 2019; 69:2565–2570 [View Article][PubMed]
    [Google Scholar]
  12. Phurbu D, Wang H, Tang Q, Lu H, Zhu H et al. Tabrizicola alkalilacus sp. nov., isolated from alkaline Lake Dajiaco on the Tibetan Plateau. Int J Syst Evol Microbiol 2019; 69:3420–3425 [View Article][PubMed]
    [Google Scholar]
  13. Han JE, Kang W, Lee J-Y, Sung H, Hyun D-W et al. Tabrizicola piscis sp. nov., isolated from the intestinal tract of a Korean indigenous freshwater fish, Acheilognathus koreensis . Int J Syst Evol Microbiol 2020; 70:ijsem004034 [View Article][PubMed]
    [Google Scholar]
  14. Denk W, Horstmann H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2004; 2:e329 [View Article][PubMed]
    [Google Scholar]
  15. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982; 16:772–774 [View Article][PubMed]
    [Google Scholar]
  16. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI technical note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  17. Tindall B. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
  18. BLIGH EG, DYER WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  19. Imhoff JF, Caumette P. Recommended standards for the description of new species of anoxygenic phototrophic bacteria. Int J Syst Evol Microbiol 2004; 54:1415–1421 [View Article][PubMed]
    [Google Scholar]
  20. Biebl H, Drews G. Das in-vivo-Spektrum ALS taxonomisches Merkmal bei Untersuchungen Zur Verbreitung von athiorhodaceae. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 1969; 123:425–452
    [Google Scholar]
  21. Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H et al. Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 2005; 55:1089–1096 [View Article][PubMed]
    [Google Scholar]
  22. Lane D. 16S/23S rRNA sequencing. nucleic acid techniques in bacterial systematics. Chichester, UK: John Wiley and Sons 1991115–175
    [Google Scholar]
  23. Edgar RC. Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113 [View Article][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  27. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  29. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  30. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article][PubMed]
    [Google Scholar]
  31. Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genom Proteom Bioinf 2015; 13:321–331 [View Article][PubMed]
    [Google Scholar]
  32. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  34. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  35. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–D293 [View Article][PubMed]
    [Google Scholar]
  36. Tang K, Jia L, Yuan B, Yang S, Li H et al. Aerobic anoxygenic phototrophic bacteria promote the development of biological soil crusts. Front Microbiol 2018; 9:2715 [View Article][PubMed]
    [Google Scholar]
  37. Tarhriz V, Hirose S, Fukushima S-I, Hejazi MA, Imhoff JF et al. Emended description of the genus Tabrizicola and the species Tabrizicola aquatica as aerobic anoxygenic phototrophic bacteria. Antonie van Leeuwenhoek 2019; 112:1169–1175 [View Article][PubMed]
    [Google Scholar]
  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Micrbiol 2007; 57:81–91
    [Google Scholar]
  39. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118
    [Google Scholar]
  40. Tandon P, Jin Q, Huang L. A promising approach to enhance microalgae productivity by exogenous supply of vitamins. Microb Cell Fact 2017; 16:219 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004508
Loading
/content/journal/ijsem/10.1099/ijsem.0.004508
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error