1887

Abstract

A Gram-stain-negative, rod-shaped, aerobic, non-flagellated, chemoheterotrophic bacterium, designated strain IMCC25678, was isolated from an artificial freshwater reservoir, Chungju Lake, in the Republic of Korea. The 16S rRNA gene sequence analysis indicated that strain IMCC25678 belongs to the genus with ≤98.7 % sequence similarities to species. Whole genome sequencing of strain IMCC25678 revealed a 3.9 Mbp genome size with a DNA G+C content of 42.2 mol%. The IMCC25678 genome shared ≤89.7 % average nucleotide identity and ≤21.4 % digital DNA–DNA hybridization values with closely related species of the genus , indicating that the strain represents a novel species. Summed feature 3 (C 6 and/or C 7), iso-C and iso-C 3-OH were found to be the predominant cellular fatty acid constituents in the strain. The major respiratory quinone was MK-7. The major polar lipids were phosphatidylethanolamine, one unidentified phosphoglycolipid, one unidentified sphingolipid and three unidentified polar lipids. Based on the phylogenetic and phenotypic characteristics, strain IMCC25678 was considered to represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is IMCC25678 (=KACC 19485=NBRC 113130).

Funding
This study was supported by the:
  • Ministry of Education, Science and Technology (Award 2019R1A2B5B02070538)
    • Principle Award Recipient: Jang-Cheon Cho
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004507
2020-10-15
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/12/6126.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004507&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983; 33:580–598 [View Article]
    [Google Scholar]
  2. Wei W, Zhou Y, Wang X, Huang X, Lai R. Sphingobacterium anhuiense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2008; 58:2098–2101 [View Article][PubMed]
    [Google Scholar]
  3. Marqués AM, Burgos-Díaz C, Aranda FJ, Teruel JA, Manresa Àngels et al. Sphingobacterium detergens sp. nov., a surfactant-producing bacterium isolated from soil. Int J Syst Evol Microbiol 2012; 62:3036–3041 [View Article][PubMed]
    [Google Scholar]
  4. Son HM, Yang JE, Kook MC, Shin HS, Park SY et al. Sphingobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from the soil of a ginseng field. J Gen Appl Microbiol 2013; 59:345–352 [View Article][PubMed]
    [Google Scholar]
  5. Li Y, Song LM, Guo MW, Wang LF, Liang WX. Sphingobacterium populi sp. nov., isolated from bark of Populus Populus x euramericana. Int J Syst Evol Microbiol 2016; 66:3456–3462 [View Article][PubMed]
    [Google Scholar]
  6. Li Y, Xu GT, Chang LP, Guo LM, Yang XQ, GT X, Gou LM et al. Sphingobacterium corticis sp. nov., isolated from bark of Populus × euramericana. Int J Syst Evol Microbiol 2017; 67:3860–3864 [View Article][PubMed]
    [Google Scholar]
  7. Li Y, Guo LM, Chang JP, Yang XQ, Xie SJ et al. Sphingobacterium corticibacter sp. nov., isolated from bark of Populus × euramericana. Int J Syst Evol Microbiol 2019; 69:1870–1874 [View Article][PubMed]
    [Google Scholar]
  8. Huys G, Purohit P, Tan CH, Snauwaert C, Vos PD et al. Sphingobacterium cellulitidis sp. nov., isolated from clinical and environmental sources. Int J Syst Evol Microbiol 2017; 67:1415–1421 [View Article][PubMed]
    [Google Scholar]
  9. Schmidt VSJ, Wenning M, Scherer S. Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 2012; 62:1506–1511 [View Article][PubMed]
    [Google Scholar]
  10. Kaur M, Singh H, Sharma S, Mishra S, Tanuku NRS et al. Sphingobacterium bovisgrunnientis sp. nov., isolated from yak milk. Int J Syst Evol Microbiol 2018; 68:636–642 [View Article][PubMed]
    [Google Scholar]
  11. Albert RA, Waas NE, Pavlons SC, Pearson JL, Ketelboeter L et al. Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 2013; 63:952–958 [View Article][PubMed]
    [Google Scholar]
  12. Sun LN, Zhang J, Chen Q, He J, Li SP. Sphingobacterium caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2013; 63:2260–2264 [View Article][PubMed]
    [Google Scholar]
  13. Lai WA, Hameed A, Liu YC, Hsu YH, Lin SY et al. Sphingobacterium cibi sp. nov., isolated from the food-waste compost and emended descriptions of Sphingobacterium spiritivorum (Holmes et al. 1982) Yabuuchi et al. 1983 and Sphingobacterium thermophilum Yabe et al. 2013. Int J Syst Evol Microbiol 2016; 66:5336–5344 [View Article][PubMed]
    [Google Scholar]
  14. Long X, Liu B, Zhang S, Zhang Y, Zeng Z et al. Sphingobacterium griseoflavum sp. nov., isolated from the insect Teleogryllus occipitalis living in deserted cropland. Int J Syst Evol Microbiol 2016; 66:1956–1961 [View Article][PubMed]
    [Google Scholar]
  15. Lee DH, Hur JS, Kahng HY. Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense . Int J Syst Evol Microbiol 2013; 63:755–760 [View Article][PubMed]
    [Google Scholar]
  16. Gichuhi J, Sevgan S, Khamis F, van den Berg J, du Plessis H et al. Diversity of fall armyworm, Spodoptera frugiperda and their gut bacterial community in Kenya. PeerJ 2020; 8:e8701 [View Article][PubMed]
    [Google Scholar]
  17. Zhou M, Guo P, Wang T, Gao L, Yin H et al. Metagenomic mining pectinolytic microbes and enzymes from an apple pomace-adapted compost microbial community. Biotechnol Biofuels 2017; 10:198 [View Article][PubMed]
    [Google Scholar]
  18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  19. Park JY, Park GA, Kim SJ. Assessment of future climate change impact on water quality of Chungju lake, South Korea, using wasp coupled with SWAT. J Am Water Resour Assoc 2013; 49:1225–1238 [View Article]
    [Google Scholar]
  20. Kim JH, Kim YH, Lee IK. Dynamics of phytoplankton community in lake Chungju. Algae 1998; 13:339
    [Google Scholar]
  21. Jeon HT, Joung Y, Kim S, Lim Y, Cho JC. A report on 17 unrecorded bacterial species in Korea isolated from lakes Soyang and Chungju in 2016. J Species Res 2017; 6:163–170
    [Google Scholar]
  22. Joung Y, Jang HJ, Park M, Song J, Cho JC. Pedobacter aquicola sp. nov., isolated from freshwater. J Microbiol 2018; 56:478–484 [View Article][PubMed]
    [Google Scholar]
  23. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  24. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002; Chapter 2:Unit 2.3 [View Article][PubMed]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  30. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  32. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  34. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  35. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article][PubMed]
    [Google Scholar]
  36. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  37. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article][PubMed]
    [Google Scholar]
  38. Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY et al. CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 2013; 41:D348–D352 [View Article][PubMed]
    [Google Scholar]
  39. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  41. Tindall BJ, Sikorski J, Smibert RA, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society of Microbiology; 2007 pp 330–393
    [Google Scholar]
  42. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: DE: MIDI Inc; 1990
    [Google Scholar]
  43. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  44. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse‐phase partition thin‐layer chromatography and high performance liquid chromatography. J Appl Microbiol 1981; 51:129–134
    [Google Scholar]
  45. Collins MD, Shah HN, Minnikin DE. A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J Appl Bacteriol 1980; 48:277–282 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004507
Loading
/content/journal/ijsem/10.1099/ijsem.0.004507
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error