RT Journal Article SR Electronic(1) A1 Ramezani, Mohaddaseh A1 Pourmohyadini, Mohammad A1 Nikou, Mahdi Moshtaghi A1 Makzum, Somaye A1 Schumann, Peter A1 Clermont, Dominique A1 Criscuolo, Alexis A1 Amoozegar, Mohammad Ali A1 Kämpfer, Peter A1 Spröer, CathrinYR 2020 T1 Halomonas lysinitropha sp. nov., a novel halophilic bacterium isolated from a hypersaline wetland JF International Journal of Systematic and Evolutionary Microbiology, VO 70 IS 12 SP 6098 OP 6105 DO https://doi.org/10.1099/ijsem.0.004504 PB Microbiology Society, SN 1466-5034, AB We carried out a polyphasic taxonomic study on a new halophilic strain designated 3(2)T, isolated from Meighan wetland, Iran. Cells of the novel strain were Gram-stain-negative, non-hemolytic, catalase- and oxidase-positive, rod-shaped, non-endospore-forming and motile. Cell growth occurred at 3–15 % NaCl (w/v; optimum, 5 %), pH 7.0–9.0 (optimum, pH 7.5–8.0) and 15–35 °C (optimum, 30 °C). 16S rRNA gene sequence comparisons confirmed the affiliation of strain 3(2)T to the class Gammaproteobacteria and the genus Halomonas with highest similarity to Halomonas daqiaonensis YCSA28T (98.4 %) and Halomonas ventosae Al12T (97.9 %). Experimental and in silico DNA–DNA hybridization values were 42.7 and 35.1% with H. daqiaonensis IBRC-M 10931T and 48 and 35.2% with H. ventosae IBRC-M 10566T, respectively, and indicated that they are different members of the same genus. The genome of the type strain was characterized by a size of 3.83 Mbp with 63 scaffolds and a G+C content of 64.8 mol%. Moreover, the average nucleotide identity values against H. ventosae Al12T and H. daqiaonensis YCSA28T were 88.8 and 88.5 %, respectively. The predominant respiratory quinone was Q-9 (92 %) with Q-8 (8 %) as a minor component. Major fatty acids were C16 : 0 cyclo, C19 : 0 ω8c, C16 : 1 ω7c and/or iso-C15:0 2-OH, C12 : 0 3-OH and C18 : 1 ω7c. The polar lipid profile of the strain contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphoaminoglycolipid and four unidentified phospholipids. According to our results, strain 3(2)T could be classified as a novel species in the genus Halomonas for which the name Halomonas lysinitropha sp. nov. is proposed. The type strain is 3(2)T (=IBRC M 10929T=LMG 29450T=CIP 111708T)., UL https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.004504