1887

Abstract

A new Gram-stain-positive, aerobic, non-motile and rod-shaped actinobacterium, designated O1, was isolated from a deep-sea sediment of the Western Pacific Ocean. Strain O1 showed optimal growth at 30 °C, between pH 6.0 and 8.0, and in the presence of 1–5 % (w/v) NaCl. The predominant menaquinone was MK-8 (H), and anteiso-C and anteiso-C were the major fatty acids. The diagnostic diamino acid in the cell-wall peptidoglycan was -diaminopimelic acid. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and one unknown glycolipid. The DNA G+C content of strain O1 was 64.9 mol% and the genome size was 4.17 Mb. Based on a similarity search and phylogenetic analysis of the 16S rRNA gene sequence, strain O1 belonged to the genus . The values of average nucleotide identity and DNA–DNA hybridization between strain O1 and its close relatives were well below the thresholds used for the delineation of a new species. On the basis of the morphological and chemotaxonomic characteristics, as well as the genotypic data, it is proposed that strain O1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is O1 (=JCM 33845=MCCC 1A16744).

Funding
This study was supported by the:
  • Rui Zhang , National Science and Technology Program during the Twelfth Five-year Plan Period (CN) , (Award 201904020029)
  • Gaiyun Zhang , Scientific Research Foundation of Third Institute of Oceanography, MNR , (Award 2019011)
  • Gaiyun Zhang , China Ocean Mineral Resources R&D Association (COMRA) Program , (Award DY135-B2-01)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004483
2020-09-23
2020-10-20
Loading full text...

Full text loading...

References

  1. Salam N, Jiao JY, Zhang XT, Li WJ. Update on the classification of higher ranks in the phylum Actinobacteria. Int J Syst Evol Microbiol 2020; 70:1331–1355 [CrossRef][PubMed]
    [Google Scholar]
  2. Trujillo ME, Goodfellow M et al. Genus I. Brevibacterium. In Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2012 pp 807–813
    [Google Scholar]
  3. Komagata K, Iizuka H. New species of Brevibacterium isolated from rice. J Agric Chem Soc Jpn 1964; 38:496–502
    [Google Scholar]
  4. Roux V, Raoult D. Brevibacterium massiliense sp. nov., isolated from a human ankle discharge. Int J Syst Evol Microbiol 2009; 59:1960–1964 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen P, Zhang L, Wang J, Ruan J, Han X et al. Brevibacterium sediminis sp. nov., isolated from deep-sea sediments from the Carlsberg and Southwest Indian ridges. Int J Syst Evol Microbiol 2016; 66:5268–5274 [CrossRef][PubMed]
    [Google Scholar]
  6. Bhadra B, Raghukumar C, Pindi PK, Shivaji S. Brevibacterium oceani sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean. Int J Syst Evol Microbiol 2008; 58:57–60 [CrossRef][PubMed]
    [Google Scholar]
  7. WJ L, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiolo 2007; 57:1424–1428
    [Google Scholar]
  8. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) In Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; pp 115–175
    [Google Scholar]
  9. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [CrossRef][PubMed]
    [Google Scholar]
  10. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [CrossRef][PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:189–204 [CrossRef][PubMed]
    [Google Scholar]
  12. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  13. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  14. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  15. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  16. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [CrossRef][PubMed]
    [Google Scholar]
  17. Prabhu J, Schauwecker F, Grammel N, Keller U, Bernhard M. Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in Halomonas elongata. Appl Environ Microbiol 2004; 70:3130–3132 [CrossRef][PubMed]
    [Google Scholar]
  18. Santa Maria KC, Chan AN, O'Neill EM, Li B. Targeted rediscovery and biosynthesis of the farnesyl-transferase inhibitor pepticinnamin E. Chembiochem 2019; 20:1387–1393 [CrossRef][PubMed]
    [Google Scholar]
  19. Son S, Hong YS, Jang M, Heo KT, Lee B et al. Genomics-Driven discovery of chlorinated cyclic hexapeptides Ulleungmycins A and B from a Streptomyces species. J Nat Prod 2017; 80:3025–3031 [CrossRef][PubMed]
    [Google Scholar]
  20. Krubasik P, Sandmann G. A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids. Mol Gen Genet 2000; 263:423–432 [CrossRef][PubMed]
    [Google Scholar]
  21. Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH. Manual of Clinical Microbiology, 7th ed. Washington, DC: American Society for Microbiology; 1999
    [Google Scholar]
  22. Cerny G. Studies on the aminopeptidase test for the distinction of Gram-negative from Gram-positive bacteria. European J Appl Microbiol Biotechnol 1978; 5:113–122 [CrossRef]
    [Google Scholar]
  23. Yin X, Yang Y, Wang S, Zhang G. Virgibacillus oceani sp. nov. isolated from ocean sediment. Int J Syst Evol Microbiol 2015; 65:159–164 [CrossRef][PubMed]
    [Google Scholar]
  24. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [CrossRef]
    [Google Scholar]
  25. Kaiser P, Geyer R, Surmann P, Fuhrmann H. LC–MS method for screening unknown microbial carotenoids and isoprenoid quinones. J Microbiol Methods 2012; 88:28–34 [CrossRef][PubMed]
    [Google Scholar]
  26. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands DC. (editors) Methods in Phytobacteriology Budapest: Akademiai Kaido; 1990 pp 199–204
    [Google Scholar]
  27. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [CrossRef]
    [Google Scholar]
  28. Collins MD, Jones D, Keddie RM, Sneath PHA. Reclassification of Chromobacterium iodinum (Davis) in a redefined genus Brevibacterium (breed) as Brevibacterium iodinum nom.rev.; comb.nov. Microbiology 1980; 120:1–10 [CrossRef]
    [Google Scholar]
  29. Gavrish EI, Krauzova VI, Potekhina NV, Karasev SG, Plotnikova EG et al. Three new species of brevibacteria--Brevibacterium antiquum sp. nov., Brevibacterium aurantiacum sp. nov., and Brevibacterium permense sp. nov. Mikrobiologiia 2004; 73:176–183 [CrossRef][PubMed]
    [Google Scholar]
  30. Kumar A, İnce IA, Katı A, Chakraborty R. Brevibacterium siliguriense sp. nov., a facultatively oligotrophic bacterium isolated from river water. Int J Syst Evol Microbiol 2013; 63:511–515 [CrossRef][PubMed]
    [Google Scholar]
  31. Collins MD, Farrow JA, Goodfellow M, Minnikin DE. Brevibacterium casei sp. nov. and Brevibacterium epidermidis sp. nov. Syst Appl Microbiol 1983; 4:388–395 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004483
Loading
/content/journal/ijsem/10.1099/ijsem.0.004483
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error