1887

Abstract

A Gram-staining-negative non endospore-forming strain, PXU-55, was isolated from the rhizosphere of the switchgrass and studied in detail to determine its taxonomic position. The results of 16S rRNA gene sequence analysis indicated that the isolate represented a member of the genus . The isolate shared highest 16S rRNA gene sequence similarities with the type strains of (98.78 %) and (98.64 %). The average nucleotide identity (ANI) and DNA–DNA hybridization (isDDH) values between the PXU-55 genome assembly and the ones of the most closely related type strains of species of the genus were 87.3 and 31.9% (), and 86.1 and 29.9% (). Menaquinone MK-6 was the major respiratory quinone. As major polar lipids, phosphatidylethanolamine, an ornithine lipid and the unidentified polar lipids L2, L3 and L4 lacking a functional group were found. Moderate to minor amounts of another ornithine lipid, the unidentified lipid L1 and a glycolipid were present, as well. The major polyamine is -homospermidine. The fatty acid profiles contained major amounts of iso-C, iso-C 3-OH, iso-C 3-OH, C, summed feature 3 (Cω7 and/or iso-C 2-OH) and various hydroxylated fatty acids in smaller amounts, among them iso C 3-OH, C 3-OH and C 3-OH, which supported the classification of the isolate as a member of the genus . Physiological and biochemical characterisation and ANI calculations with the type strains of the most closely related species allowed a clear phenotypic and genotypic differentiation of the strain. For this reason, we propose that strain PXU-55 (=CIP 111646=CCM 8914) represents a novel species with the name sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004482
2020-10-09
2020-10-20
Loading full text...

Full text loading...

References

  1. Bernardet JF, Bowman JP et al. Genus I. Flavobacterium. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology 4, 2nd ed. New York: Springer-Verlag; 2011 pp 112–154
    [Google Scholar]
  2. Bernardet JF, Bowman JP. The genus Flavobacterium. In Dworkin M, Flakow S, Rosenberg E, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes. A Handbook on the Biology of Bacteria 7, 3rd ed. New York: Springer-Verlag; 2006 pp 481–453.
    [Google Scholar]
  3. Madhaiyan M, Poonguzhali S, Lee JS, Lee KC, Sundaram S. Flavobacterium glycines sp. nov., a facultative methylotroph isolated from the rhizosphere of soybean. Int J Syst Evol Microbiol 2010; 60:2187–2192 [CrossRef][PubMed]
    [Google Scholar]
  4. Xiao YP, Hui W, Lee JS, Lee KC, Quan ZX. Flavobacterium dongtanense sp. nov., isolated from the rhizosphere of a wetland reed. Int J Syst Evol Microbiol 2011; 61:343–346 [CrossRef][PubMed]
    [Google Scholar]
  5. Kämpfer P, Busse HJ, McInroy JA, Xu J, Glaeser SP. Flavobacterium nitrogenifigens sp. nov., isolated from switchgrass (Panicum virgatum). Int J Syst Evol Microbiol 2015; 65:2803–2809 [CrossRef][PubMed]
    [Google Scholar]
  6. Zhang MY, Xu H, Zhang TY, Xie J, Cheng J et al. Flavobacterium notoginsengisoli sp. nov., isolated from the rhizosphere of Panax notoginseng. Antonie van Leeuwenhoek 2015; 108:545–552 [CrossRef][PubMed]
    [Google Scholar]
  7. Du J, Yi TH. Flavobacterium tyrosinilyticum sp. nov., isolated from the rhizosphere of wild strawberry. Int J Syst Evol Microbiol 2016; 66:2629–2634 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim DH, Singh P, Farh ME-A, Kim Y-J, Nguyen N-L et al. Flavobacterium panacis sp. nov., isolated from rhizosphere of Panax ginseng. Antonie van Leeuwenhoek 2016; 109:1199–1208 [CrossRef][PubMed]
    [Google Scholar]
  9. Moya G, Yan ZF, Trinh H, Won KH, Yang JE et al. Flavobacterium hibisci sp. nov., isolated from the rhizosphere of Hibiscus syriacus L. Int J Syst Evol Microbiol 2017; 67:537–542 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhao JC, Cheng J, Zhang Q, Gao ZW, Zhang MY et al. Flavobacterium artemisiae sp. nov., isolated from the rhizosphere of Artemisia annua L. and emended descriptions of Flavobacterium compostarboris and Flavobacterium procerum. Int J Syst Evol Microbiol 2018; 68:1509–1513 [CrossRef][PubMed]
    [Google Scholar]
  11. Liu Y, Le Han H, Zou Y, Kim SG. Flavobacterium ustbae sp. nov., isolated from rhizosphere soil of Alhagi sparsifolia. Int J Syst Evol Microbiol 2019; 69:3955–3960 [CrossRef][PubMed]
    [Google Scholar]
  12. Xu L, Wang HT, Zhang JX, Zhang H, Wang S et al. Flavobacterium alkalisoli sp. nov., isolated from rhizosphere soil of Suaeda salsa. Int J Syst Evol Microbiol 2020; 70:3888-3898 [CrossRef][PubMed]
    [Google Scholar]
  13. Barelli L, Waller AS, Behie SW, Bidochka MJ. Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth-promoting organisms and maintenance of disease-suppressive soil. PLoS One 2020; 15:e0231150 [CrossRef][PubMed]
    [Google Scholar]
  14. Garcia-Lemos AM, Gobbi A, Nicolaisen MH, Hansen LH, Roitsch T et al. Under the christmas tree: belowground bacterial associations with Abies nordmanniana across production systems and plant development. Front Microbiol 2020; 11:198 [CrossRef][PubMed]
    [Google Scholar]
  15. Jiang Y, Lu H, Xia K, Wang Q, Yang J et al. Effect of mangrove species on removal of tetrabromobisphenol A from contaminated sediments. Chemosphere 2020; 244:125385 [CrossRef][PubMed]
    [Google Scholar]
  16. Dai Y, Yang F, Zhang L, Xu Z, Fan X et al. Wheat-associated microbiota and their correlation with stripe rust reaction. J Appl Microbiol 2020; 128:544–555 [CrossRef][PubMed]
    [Google Scholar]
  17. Saccà ML, Manici LM, Caputo F, Frisullo S. Changes in rhizosphere bacterial communities associated with tree decline: grapevine ESCA syndrome case study. Can J Microbiol 2019; 65:930–943 [CrossRef][PubMed]
    [Google Scholar]
  18. Zhao M, Yuan J, Shen Z, Dong M, Liu H et al. Predominance of soil vs root effect in rhizosphere microbiota reassembly. FEMS Microbiol Ecol 2019; 95:fiz139 [CrossRef][PubMed]
    [Google Scholar]
  19. Sundara Rao WVB, Sinha MK. Phosphate dissolving microorganisms in the soil and rhizosphere. Indian J Agr Sci 1963; 33:272–278
    [Google Scholar]
  20. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  21. Bernardet J-F, Nakagawa Y, Holmes B. Subcommittee On The Taxonomy Of Flavobacterium And Cytophaga-Like Bacteria Of The International Committee On Systematics Of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  22. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  23. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  24. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [CrossRef]
    [Google Scholar]
  25. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [CrossRef]
    [Google Scholar]
  26. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [CrossRef]
    [Google Scholar]
  27. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  28. Busse H- J, Auling G. Polyamine Pattern as a Chemotaxonomic Marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [CrossRef]
    [Google Scholar]
  29. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Evol Microbiol 1997; 47:698–708 [CrossRef]
    [Google Scholar]
  30. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [CrossRef]
    [Google Scholar]
  31. Kämpfer P, Dreyer U, Neef A, Dott W, Busse HJ. Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2003; 53:93–97 [CrossRef][PubMed]
    [Google Scholar]
  32. Lane DJ. 16S/23S rRNA sequencing nucleic acid techniques in bacterial systematics. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Wiley, New York: Wiley; 1991 pp 115–175
    [Google Scholar]
  33. Brosius J, Dull TJ, Sleeter DD, Noller HF. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 1981; 148:107–127 [CrossRef]
    [Google Scholar]
  34. Yoon SH, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  35. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  36. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2012; 35:7188–7196 [CrossRef]
    [Google Scholar]
  37. Pruesse E, Peplies J, Glöckner FO, Yarza P, Richter M. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  38. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  39. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author Seattle: Department of Genome Sciences, University of Washington; 2005
    [Google Scholar]
  40. Jukes TH, Cantor CR. Evolution of the protein molecules. In Munro HN. editor Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  41. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  42. Criscuolo A, Brisse S. AlienTrimmer: a tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. Genomics. ftp://ftp.pasteur.fr/pub/GenSoft/projects/AlienTrimmer/; 2013
  43. Liu Y, Schröder J, Schmidt B. Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 2013; 29:308–315 [CrossRef][PubMed]
    [Google Scholar]
  44. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  45. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  46. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [CrossRef][PubMed]
    [Google Scholar]
  47. Criscuolo A. A fast alignment-free bioinformatics procedure to infer accurate distance-based phylogenetic trees from genome assemblies. Res Ideas Outcomes 2019; 5:
    [Google Scholar]
  48. Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [CrossRef]
    [Google Scholar]
  49. Kawai Y, Yano I, Kaneda K. Various kinds of lipoamino acids including a novel serine-containing lipid in an opportunistic pathogen Flavobacterium. Eur J Biochem 1988; 171:73–80
    [Google Scholar]
  50. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  51. Zamora L, Vela AI, Sánchez-Porro C, Palacios MA, Domínguez L et al. Characterization of flavobacteria possibly associated with fish and fish farm environment. Description of three novel Flavobacterium species: Flavobacterium collinsii sp. nov., Flavobacterium branchiarum sp. nov., and Flavobacterium branchiicola sp. nov. Aquaculture 2013; 416-417:346–353 [CrossRef]
    [Google Scholar]
  52. Jung SY, Kim Y-J, Hoang VA, Jin Y, Nguyen N-L et al. Flavobacterium panacisoli sp. nov., isolated from soil of a ginseng field. Arch Microbiol 2016; 198:645–651 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004482
Loading
/content/journal/ijsem/10.1099/ijsem.0.004482
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error