1887

Abstract

The taxonomic position of a novel aerobic, Gram-positive actinobacteria, designated strain RB5, was determined using a polyphasic approach. The strain, isolated from the gut of the fungus-farming termite , showed morphological, physiological and chemotaxonomic properties typical of the genus . Based on 16S rRNA gene sequence analysis, the closest phylogenetic neighbour of RB5 was DSM 42102 (98.87 %). DNA–DNA hybridization experiments between strain RB5 and DSM 42102 resulted in a value of 27.4 % (26.8 %). The cell wall of strain RB5 contained -diaminopimelic acid as the diagnostic amino acid. Mycolic acids and diagnostic sugars in whole-cell hydrolysates were not detected. The strain produced the following major phospholipids: diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol-mannoside and phosphatidylserine. The menaquinone profile showed hexa- and octahydrogenated menaquinones containing nine isoprene units [MK-9(H) and MK-9(H)]. The strain exhibited a fatty acid profile containing the following major fatty acids: 12-methyltridecanoic acid (iso-C) 12-methyltetradecanoic acid (anteiso-C), 13-methyltetradecanoic acid (iso-C) and 14-methylpentadecanoic acid (iso-C). Here, we propose a novel species of the genus with the type strain RB5 (=VKM Ac-2839=NRRL B65539).

Funding
This study was supported by the:
  • Villum Fonden (Award VKR10101)
    • Principle Award Recipient: Michael Poulsen
  • Deutsche Forschungsgemeinschaft (Award CRC 1127 (A6) and BE-4799/3-1)
    • Principle Award Recipient: Christine Beemelmanns
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004478
2020-09-24
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/11/5806.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004478&mimeType=html&fmt=ahah

References

  1. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337341 PMCID [View Article][PubMed]
    [Google Scholar]
  2. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  3. van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017; 41:392–416 [View Article][PubMed]
    [Google Scholar]
  4. Van Arnam EB, Currie CR, Clardy J. Defense contracts: molecular protection in insect-microbe symbioses. Chem Soc Rev 2018; 47:1638–1651 [View Article][PubMed]
    [Google Scholar]
  5. Ramadhar TR, Beemelmanns C, Currie CR, Clardy J. Bacterial symbionts in agricultural systems provide a strategic source for antibiotic discovery. J Antibiot 2014; 67:53–58 [View Article][PubMed]
    [Google Scholar]
  6. Chevrette MG, Carlson CM, Ortega HE, Thomas C, Ananiev GE et al. The antimicrobial potential of Streptomyces from insect microbiomes. Nat Commun 2019; 10:516 [View Article][PubMed]
    [Google Scholar]
  7. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75:311–335 [View Article][PubMed]
    [Google Scholar]
  8. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 2016; 43:155–176 [View Article][PubMed]
    [Google Scholar]
  9. Otani S, Mikaelyan A, Nobre T, Hansen LH, Koné NA et al. Identifying the core microbial community in the gut of fungus-growing termites. Mol Ecol 2014; 23:4631–4644 [View Article][PubMed]
    [Google Scholar]
  10. Otani S, Hansen LH, Sørensen SJ, Poulsen M. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment. Microb Ecol 2016; 71:207–220 [View Article][PubMed]
    [Google Scholar]
  11. Benndorf R, Guo H, Sommerwerk E, Weigel C, Garcia-Altares M et al. Natural products from actinobacteria associated with fungus-growing termites. Antibiotics 2018; 7:83 [View Article][PubMed]
    [Google Scholar]
  12. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: sequence visualization and annotation. Bioinformatics 2000; 16:944–945 [View Article][PubMed]
    [Google Scholar]
  13. Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2005; 33:D501–D504 [View Article][PubMed]
    [Google Scholar]
  14. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed]
    [Google Scholar]
  15. GGDC GGDC web server available from. http://ggdc.dsmz.de/
  16. Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  20. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 1992; 9:678–687 [View Article][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  22. Cashion P, Holder-Franklin MA, McCully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81:461–466 [View Article][PubMed]
    [Google Scholar]
  23. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  24. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  25. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  26. Harrison J, Studholme DJ. Recently published Streptomyces genome sequences. Microb Biotechnol 2014; 7:373–380 [View Article][PubMed]
    [Google Scholar]
  27. Kämpfer P. The family Streptomycetaceae, Part I: taxonomy. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. (editors) The Prokaryotes: Volume 3: Archaea Bacteria: Firmicutes, Actinomycetes New York, NY: Springer New York; 2006 pp 538–5604
    [Google Scholar]
  28. Groth I, Schumann P, Rajney FA, Martin K, Schuetze B et al. Bogoriella caseilytica gen. nov., sp. nov., a new alkaliphilic actinomycete from a soda lake in Africa. Int J Syst Bacteriol 1997; 47:788–794 [View Article][PubMed]
    [Google Scholar]
  29. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  30. Wink J, Kroppenstedt RM, Seibert G, Stackebrandt E. Actinomadura namibiensis sp. nov. Int J Syst Evol Microbiol 2003; 53:721–724 [View Article][PubMed]
    [Google Scholar]
  31. Suter MA. Isolierung und Charakterisierung von Melanin-negativen Mutanten aus Streptomyces glaucescens. Diss Naturwiss ETH Zürich, Nr 1978; 6276:0000
    [Google Scholar]
  32. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  33. Kamlage B. Methods for general and molecular bacteriology. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) 791 Pages, Numerous Figures and Tables Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  34. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  35. Groth I, Schütze B, Boettcher T, Pullen CB, Rodriguez C et al. Kitasatospora putterlickiae sp. nov., isolated from rhizosphere soil, transfer of Streptomyces kifunensis to the genus Kitasatospora as Kitasatospora kifunensis comb. nov., and emended description of Streptomyces aureofaciens Duggar 1948. Int J Syst Evol Microbiol 2003; 53:2033-40 [View Article][PubMed]
    [Google Scholar]
  36. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  37. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  38. Minnikin DE, Alshamaony L, Goodfellow M. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 1975; 88:200–204 [View Article][PubMed]
    [Google Scholar]
  39. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  40. Wink J, Schumann P, Atasayar E, Klenk HP, Zaburannyi N et al. Streptomyces caelicus’, an antibiotic-producing species of the genus Streptomyces, and Streptomyces canchipurensis Li et al. 2015 are later heterotypic synonyms of Streptomyces muensis Ningthoujam et al. 2014. Int J Syst Evol Microbiol 2017; 67:548–556 [View Article]
    [Google Scholar]
  41. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Microbiol 1979; 47:87–95
    [Google Scholar]
  42. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Microbiol 1980; 48:459–470 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004478
Loading
/content/journal/ijsem/10.1099/ijsem.0.004478
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error