1887

Abstract

A Gram-stain-negative, aerobic, non-motile, pink-pigmented, coccus bacterium, designated CPCC 101081, was isolated from a gravel soil sample collected from Badain Jara desert, PR China. Growth of the isolate occurred at 10–37 °C and pH 5.0–8.0, with optimal growth at 28–32 °C and pH 7.0, respectively. The major cellular fatty acids were summed feature 8 (Cω7/C ω6), summed feature 3 (C ω6/Cω7) and C2-OH. Q-10 was detected as the main respiratory quinone. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified phospholipid, an amino-containing lipid and an unidentified glycophospholipid were examined in the polar lipids extraction. The 16S rRNA gene sequence comparison of strain CPCC 101081 with the available sequences in the GenBank database showed that the isolate was closely related to members of the genus , with the highest similarity to DSM 14916 (97.4 %). In the phylogenetic trees based on 16S rRNA gene sequences and the core genomes, strain CPCC 101081 was included within the clade of the genus , representing a species level, with the closest neighbor of DSM 14916 . The genomic DNA G+C content was 68.7 mol%. The average nucleotide identity and the digital DNA–DNA hybridization values between strain CPCC 101081 and the related type strains of the genus were all far lower than the cut-off values for definition species. On the basis of above phenotypic and genotypic characteristics, strain CPCC 101081 is proposed to represent a novel species of the genus with the name sp. nov. strain CPCC 101081 (=KCTC 62852=NBRC 113512) is the type strain of the species.

Funding
This study was supported by the:
  • Yu-Qin Zhang , National Natural Science Foundation of China , (Award NSFC 31670010)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004467
2020-09-16
2020-09-22
Loading full text...

Full text loading...

References

  1. Rihs JD, Brenner DJ, Weaver RE, Steigerwalt AG, Hollis DG et al. Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 1993; 31:3275–3283 [CrossRef][PubMed]
    [Google Scholar]
  2. Sánchez-Porro C, Gallego V, Busse H-J, Kämpfer P, Ventosa A. Transfer of Teichococcus ludipueritiae and Muricoccus roseus to the genus Roseomonas, as Roseomonas ludipueritiae comb. nov. and Roseomonas rosea comb. nov., respectively, and emended description of the genus Roseomonas. Int J Syst Evol Microbiol 2009; 59:1193–1198 [CrossRef][PubMed]
    [Google Scholar]
  3. Venkata Ramana V, Sasikala C, Takaichi S, Ramana CV. Roseomonas aestuarii sp. nov., a bacteriochlorophyll-a containing alphaproteobacterium isolated from an estuarine habitat of India. Syst Appl Microbiol 2010; 33:198–203 [CrossRef][PubMed]
    [Google Scholar]
  4. Bibashi E, Sofianou D, Kontopoulou K, Mitsopoulos E, Kokolina E. Peritonitis due to Roseomonas fauriae in a patient undergoing continuous ambulatory peritoneal dialysis. J Clin Microbiol 2000; 38:456–457[PubMed]
    [Google Scholar]
  5. McLean TW, Rouster-Stevens K, Woods CR, Shetty AK. Catheter-related bacteremia due to Roseomonas species in pediatric hematology/oncology patients. Pediatr Blood Cancer 2006; 46:514–516 [CrossRef][PubMed]
    [Google Scholar]
  6. Subudhi CP, Adedeji A, Kaufmann ME, Lucas GS, Kerr JR. Fatal Roseomonas gilardii bacteremia in a patient with refractory blast crisis of chronic myeloid leukemia. Clin Microbiol Infect 2001; 7:573–575 [CrossRef][PubMed]
    [Google Scholar]
  7. Yoo S-H, Weon H-Y, Noh H-J, Hong S-B, Lee C-M et al. Roseomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:1482–1485 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim J-Y, Kim D-U, Kang M-S, Jang JH, Kim SJ et al. Roseomonas radiodurans sp. nov., a gamma-radiation-resistant bacterium isolated from gamma ray-irradiated soil. Int J Syst Evol Microbiol 2018; 68:2443–2447 [CrossRef][PubMed]
    [Google Scholar]
  9. Fang X-M, Bai J-L, Zhang D-W, Su J, Zhao L-L et al. Roseomonas globiformis sp. nov., an airborne bacteria isolated from an urban area of Beijing. Int J Syst Evol Microbiol 2018; 68:3301–3306 [CrossRef][PubMed]
    [Google Scholar]
  10. Chaudhary DK, Kim J. Roseomonas nepalensis sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017; 67:981–987 [CrossRef][PubMed]
    [Google Scholar]
  11. Zhang Y-Q, Yu L-Y, Wang D, Liu H-Y, Sun C-H et al. Roseomonas vinacea sp. nov., a Gram-negative coccobacillus isolated from a soil sample. Int J Syst Evol Microbiol 2008; 58:2070–2074 [CrossRef][PubMed]
    [Google Scholar]
  12. Gallego V, Sánchez-Porro C, García MT, Ventosa A. Roseomonas aquatica sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2006; 56:2291–2295 [CrossRef][PubMed]
    [Google Scholar]
  13. Lopes A, Espirito Santo C, Grass G, Chung AP, Morais PV. Roseomonas pecuniae sp. nov., isolated from the surface of a copper-alloy coin. Int J Syst Evol Microbiol 2011; 61:610–615 [CrossRef][PubMed]
    [Google Scholar]
  14. Zhao L-L, Deng Y, Sun Y, Liu H-Y, Yu L-Y et al. Roseomonas vastitatis sp. nov. isolated from Badain Jaran desert in China. Int J Syst Evol Microbiol 2020; 70:1186–1191 [CrossRef][PubMed]
    [Google Scholar]
  15. Yuan L-J, Zhang Y-Q, Guan Y, Wei Y-Z, Li Q-P et al. Saccharopolyspora antimicrobica sp. nov., an actinomycete from soil. Int J Syst Evol Microbiol 2008; 58:1180–1185 [CrossRef][PubMed]
    [Google Scholar]
  16. Reddy GSN, Nagy M, Garcia-Pichel F. Belnapia moabensis gen. nov., sp. nov., an alphaproteobacterium from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 2006; 56:51–58 [CrossRef][PubMed]
    [Google Scholar]
  17. Jin R, Su J, Liu H-Y, Wei Y-Z, Li Q-P et al. Description of Belnapia rosea sp. nov. and emended description of the genus Belnapia Reddy et al. 2006. Int J Syst Evol Microbiol 2012; 62:705–709 [CrossRef][PubMed]
    [Google Scholar]
  18. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  19. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  20. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series) vol. 20 Manhattan, NY: Academic Press; 1985 pp 173–199
    [Google Scholar]
  21. Kämpfer P, Andersson MA, Jäckel U, Salkinoja-Salonen M. Teichococcus ludipueritiae gen. nov. sp. nov., and Muricoccus roseus gen. nov. sp. nov. Representing Two New Genera of the α-1 Subclass of the Proteobacteria. Syst Appl Microbiol 2003; 26:23–29 [CrossRef]
    [Google Scholar]
  22. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  27. Kimura M. The Neutral Theory of Molecular Evolution Cambridge, Cambridgeshire: Cambridge University Press; 1983
    [Google Scholar]
  28. Kluge AG, Farris JS. Quantitative Phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [CrossRef]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  31. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [CrossRef]
    [Google Scholar]
  32. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  33. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal Omega. Mol Syst Biol 2011; 7:539 [CrossRef][PubMed]
    [Google Scholar]
  34. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [CrossRef][PubMed]
    [Google Scholar]
  35. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  36. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  37. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  38. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004467
Loading
/content/journal/ijsem/10.1099/ijsem.0.004467
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error