gen. nov., sp. nov., a novel thermophilic phototrophic purple sulphur bacterium of the isolated from Nakabusa hot springs, Japan Free

Abstract

A novel thermophilic phototrophic purple sulphur bacterium was isolated from microbial mats (56 °C) at Nakabusa hot springs, Nagano prefecture, Japan. Cells were motile, rod-shaped, stain Gram-negative and stored sulphur globules intracellularly. Bacteriochlorophyll and carotenoids of the normal spirilloxanthin series were the major pigments. Dense liquid cultures were red in colour. Strain No.7 was able to grow photoautotrophically using sulfide, thiosulfate, sulfite and hydrogen (in the presence of sulfide) as electron donors and bicarbonate as the sole carbon source. Optimum growth occurred under anaerobic conditions in the light at 50 °C (range, 40–56 °C) and pH 7.2 (range, pH 7–8). Major fatty acids were C (46.8 %), C ω7 (19.9 %), C ω7 (21.1 %), C (4.6 %) and C (2.4 %). The polar lipid profile showed phosphatidylglycerol and unidentified aminophospholipids to be the major lipids. The only quinone detected was ubiquinone-8. 16S rRNA gene sequence comparisons indicated that the novel bacterium is only distantly related to with a nucleotide identity of 90.4 %. The phylogenetic analysis supported the high novelty of strain No.7 with a long-branching phylogenetic position within the next to . The genome comprised a circular chromosome of 2.99 Mbp (2 989 870 bp), included no plasmids and had a DNA G+C content of 61.2 mol%. Polyphasic taxonomic analyses of the isolate suggested strain No.7 is a novel genus within the . The proposed genus name of the second truly thermophilic purple sulphur bacterium is gen. nov. with the type species sp. nov. (DSM 110881=JCM 39101).

Funding
This study was supported by the:
  • NASA exobiology (Award NNX16SJ62G)
    • Principle Award Recipient: Donald A. Bryant
  • Tokyo Human Resources for City Diplomacy Scholarship Program
    • Principle Award Recipient: Mohit Kumar Saini
  • Institute for Fermentation, Osaka
    • Principle Award Recipient: Mohit Kumar Saini
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004465
2020-09-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/11/5701.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004465&mimeType=html&fmt=ahah

References

  1. Pfennig N, Trüper HG et al. The family Chromatiaceae. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H et al. (editors) The Prokaryotes. a Handbook on the Biology of Bacteria. Ecophysiology, Isolation, Identification, Applications, 2nd ed. Berlin: Heidelberg & New York: Springer; 1992 pp 3200–3221
    [Google Scholar]
  2. Stomp M, Huisman J, Stal LJ, Matthijs HCP. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. Isme J 2007; 1:271–282 [View Article]
    [Google Scholar]
  3. Imhoff JF. Diversity of anaerobic anoxygenic phototrophic purple bacteria. In Hallenbeck P. editor Modern Topics in the Phototrophic Prokaryotes: Environmental and Applied Aspects Springer International Publishing; 2017 pp 47–85
    [Google Scholar]
  4. van Gemerden H, Mas J. Ecology of phototrophic sulfur bacteria. In Blankenship RE, Madigan MT, Bauer CE. (editors) Advances in Photosynthesis and Respiration, Vol. 2, Anoxygenic Photosynthetic Bacteria Netherlands: Springer; 1995 pp 49–85
    [Google Scholar]
  5. Hu X, Ritz T, Damjanović A, Autenrieth F, Schulten K. Photosynthetic apparatus of purple bacteria. Q Rev Biophys 2002; 35:1–62 [View Article]
    [Google Scholar]
  6. Imhoff JF. Family I. Chromatiaceae Bavendamm 1924, 125AL emend. Imhoff 1984b, 339. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology vol. 2, 2nd ed. New York: Springer; 2005 pp pp. 1–59
    [Google Scholar]
  7. Madigan MT, Jung DO. An overview of purple bacteria: systematics, physiology, and habitats. In Hunter CN, Daldal F, Thurnauer MC, Beatty JT. (editors) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, Vol. 28, The Purple Phototrophic Bacteria Dordrecht: Springer; 2009 pp 1–15
    [Google Scholar]
  8. Tank M, Thiel V, Ward DM, Bryant DA. A panoply of phototrophs: an overview of the thermophilic chlorophototrophs of the microbial mats of alkaline siliceous hot springs in Yellowstone National Park, WY, USA. In Hallenbeck P. editor Modern Topics in the Phototrophic Prokaryotes: Environmental and Applied Aspects Springer International Publishing; 2017 pp 87–137
    [Google Scholar]
  9. Thiel V, Tank M, Bryant DA. Diversity of chlorophototrophic bacteria revealed in the omics era. Annu Rev Plant Biol 2018; 69:21–49 [View Article]
    [Google Scholar]
  10. Madigan MT. A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring. Science 1984; 225:313–315 [View Article]
    [Google Scholar]
  11. Madigan MT. Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. Int J Syst Bacteriol 1986; 36:222–227 [View Article]
    [Google Scholar]
  12. Bryant DA, Frigaard N-U. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 2006; 14:488–496 [View Article]
    [Google Scholar]
  13. Martinez JN, Nishihara A, Lichtenberg M, Trampe E, Kawai S et al. Vertical distribution and diversity of phototrophic bacteria within a hot spring microbial mat (Nakabusa hot springs, Japan). Microb Environ 2019; 34:374–387 [View Article]
    [Google Scholar]
  14. Eichler B, Pfennig N. A new purple sulfur bacterium from stratified freshwater lakes, Amoebobacter purpureus sp. nov. Arch Microbiol 1988; 149:395–400 [View Article]
    [Google Scholar]
  15. Kimura Y, Lyu S, Okoshi A, Okazaki K, Nakamura N et al. Effects of calcium ions on the thermostability and spectroscopic properties of the LH1-RC complex from a new thermophilic purple bacterium Allochromatium tepidum. J Phys Chem B 2017; 121:5025–5032 [View Article]
    [Google Scholar]
  16. Kampf C, Pfennig N. Capacity of Chromatiaceae for chemotrophic growth. specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 1980; 127:125–135 [View Article]
    [Google Scholar]
  17. Vogl K, Tank M, Orf GS, Blankenship RE, Bryant DA. Bacteriochlorophyll f: properties of chlorosomes containing the “forbidden chlorophyll”. Front Microbiol 2012; 3:298 [View Article]
    [Google Scholar]
  18. Frigaard N-U, Takaichi S, Hirota M, Shimada K, Matsuura K. Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Arch Microbiol 1997; 167:343–349 [View Article]
    [Google Scholar]
  19. Biebl H, Drews G. Das in-vivo-Spektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung von Athiorhodaceae. Zentralb. Bakterio. Parasitenkd Infektionskr Hyg Abt 1969; 2:425–452
    [Google Scholar]
  20. Glaeser J, Overmann J. Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch Microbiol 1999; 171:405–416 [View Article]
    [Google Scholar]
  21. Imanishi M, Takenouchi M, Takaichi S, Nakagawa S, Saga Y et al. A dual role for Ca 2+ in expanding the spectral diversity and stability of light-harvesting 1 reaction center photocomplexes of purple phototrophic bacteria. Biochemistry 2019; 58:2844–2852 [View Article]
    [Google Scholar]
  22. Kimura Y, Hirano Y, Yu L-J, Suzuki H, Kobayashi M et al. Calcium ions are involved in the unusual red shift of the light-harvesting 1 Qy transition of the core complex in thermophilic purple sulfur bacterium Thermochromatium tepidum. J Biol Chem 2008; 283:13867–13873 [View Article]
    [Google Scholar]
  23. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  24. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article]
    [Google Scholar]
  25. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  26. Núñez-Cardona MT. Fatty acids analysis of photosynthetic sulfur bacteria by gas chromatography. In Salih B. editor Gas Chromatography - Biochemicals, Narcotics and Essential Oils InTech; 2012 pp 117–138
    [Google Scholar]
  27. Kimura Y, Kawakami T, Yu L-J, Yoshimura M, Kobayashi M et al. Characterization of the quinones in purple sulfur bacterium Thermochromatium tepidum. FEBS Lett 2015; 589:1761–1765 [View Article]
    [Google Scholar]
  28. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  29. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  30. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article]
    [Google Scholar]
  31. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article]
    [Google Scholar]
  32. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article]
    [Google Scholar]
  33. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  34. Glo FO, Richter M, Rossell R. Genome analysis JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M, Alexander F. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  36. Tank M, Thiel V, Imhoff JF. Phylogenetic relationship of phototrophic purple sulfur bacteria according to pufL and pufM genes. Int Microbiol 2009; 12:175–185
    [Google Scholar]
  37. Weissgerber T, Zigann R, Bruce D, Chang Y-J, Detter JC et al. Complete genome sequence of Allochromatium vinosum DSM 180(T). Stand Genomic Sci 2011; 5:311–330 [View Article][PubMed]
    [Google Scholar]
  38. Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol 2005; 8:253–259 [View Article]
    [Google Scholar]
  39. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics 2013 pp 115–175
    [Google Scholar]
  40. Wright ES, Yilmaz LS, Noguera DR. Decipher, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 2012; 78:717–725 [View Article]
    [Google Scholar]
  41. Ludwig W et al. ARB: a software environment for sequence data. Nucl Acids Res 2004; 32:1363–1371 [View Article]
    [Google Scholar]
  42. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [View Article]
    [Google Scholar]
  43. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Ludwig W et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 2014; 42:D643–D648 [View Article]
    [Google Scholar]
  44. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  45. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  46. Nagatsuma S, Gotou K, Yamashita T, LJ Y, Shen JR et al. Phospholipid distributions in purple phototrophic bacteria and LH1-RC core complexes. Biochim Biophys Acta - Bioenerg 1860; 2019:461–468
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004465
Loading
/content/journal/ijsem/10.1099/ijsem.0.004465
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed