1887

Abstract

Strain CFH S0501, a novel Gram-stain-positive, aerobic, rod-shaped, endospore-forming and motile micro-organism with peritrichous flagella, was isolated from a sediment sample collected from the Yellow River in Henan Province, PR China. Optimum growth was observed at 28 °C, pH 7.0 and without NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the strain belonged to the genus and was closely related to DSM 8445 and Gsoil 3088 (with 96.8 and 96.7 % sequence similarity, respectively). The predominant menaquinone was MK-7. Major cellular fatty acids were anteiso-C and iso-C. Polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, two unidentified phospholipids and an unidentified polar lipid. The cell-wall peptidoglycan was found to contain meso-diaminopimelic acid. The genome size was 5.26 Mbp with a G+C content of 49.7 mol%. The average nucleotide identity (ANI) and DNA–DNAhybridization (DDH) values between CFH S0501 and the other species of the genus were found to be low (ANIm <86.11 %, ANIb <70.30 % and DDH <25.00 %). Based on physiological properties, chemotaxonomic characteristics and low ANI and DDH results, strain CFH S0501 is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is CFH S0501 (=DSM 29940=BCRC 80809).

Funding
This study was supported by the:
  • Hong Ming , Doctor Scientific Research Fund of Xinxiang Medical University , (Award XYBSKYZZ201625)
  • Hong Ming , Henan Province University youth researcher support project , (Award 2017GGJS106)
  • Guo-Xing Nie , Innovation Scientists and Technicians Troop Construction Projects of Henan Province , (Award CXTD2016043)
  • Hong Ming , Key Technologies R&D Program of Henan Province , (Award 202102110107)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004462
2020-09-15
2020-09-20
Loading full text...

Full text loading...

References

  1. Shida O, Takagi H, Kadowaki K, Komagata K. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 1996; 46:939–946 [CrossRef][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Logan NA, Forsyth G, Lebbe L, Goris J, Heyndrickx M et al. Polyphasic identification of Bacillus and Brevibacillus strains from clinical, dairy and industrial specimens and proposal of Brevibacillus invocatus sp. nov.. Int J Syst Evol Microbiol 2002; 52:953–966 [CrossRef][PubMed]
    [Google Scholar]
  4. Baek S-H, Im W-T, Oh HW, Lee J-S, Oh H-M et al. Brevibacillus ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2006; 56:2665–2669 [CrossRef][PubMed]
    [Google Scholar]
  5. Choi M-J, Bae J-Y, Kim K-Y, Kang H, Cha C-J. Brevibacillus fluminis sp. nov., isolated from sediment of estuarine wetland. Int J Syst Evol Microbiol 2010; 60:1595–1599 [CrossRef]
    [Google Scholar]
  6. Takebe F, Hirota K, Nodasaka Y, Yumoto I. Brevibacillus nitrificans sp. nov., a nitrifying bacterium isolated from a microbiological agent for enhancing microbial digestion in sewage treatment tanks. Int J Syst Evol Microbiol 2012; 62:2121–2126 [CrossRef][PubMed]
    [Google Scholar]
  7. Inan K, Canakci S, Belduz AO, Sahin F. Brevibacillus aydinogluensis sp. nov., a moderately thermophilic bacterium isolated from Karakoc hot spring. Int J Syst Evol Microbiol 2012; 62:849–855 [CrossRef][PubMed]
    [Google Scholar]
  8. Hatayama K, Shoun H, Ueda Y, Nakamura A. Brevibacillus fulvus sp. nov., isolated from a compost pile. Int J Syst Evol Microbiol 2014; 64:506–512 [CrossRef][PubMed]
    [Google Scholar]
  9. Goto K, Fujita R, Kato Y, Asahara M, Yokota A. Reclassification of Brevibacillus brevis strains NCIMB 13288 and DSM 6472 (=NRRL NRS-887) as Aneurinibacillus danicus sp. nov. and Brevibacillus limnophilus sp. nov. Int J Syst Evol Microbiol 2004; 54:419–427 [CrossRef][PubMed]
    [Google Scholar]
  10. Che J, Liu B, Ruan C, Tang J, Huang D. Biocontrol of Lasiodiplodia theobromae, which causes black spot disease of harvested wax apple fruit, using a strain of Brevibacillus brevis FJAT-0809-GLX. Crop Prot 2015; 67:178–183 [CrossRef]
    [Google Scholar]
  11. Song Z, Liu Q, Guo H, Ju R, Zhao Y et al. Tostadin, a novel antibacterial peptide from an antagonistic microorganism Brevibacillus brevis XDH. Bioresour Technol 2012; 111:504–506 [CrossRef][PubMed]
    [Google Scholar]
  12. Yang X, Yousef AE. Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. World J Microbiol Biotechnol 2018; 34:57 [CrossRef][PubMed]
    [Google Scholar]
  13. Edwards SG, Seddon B. Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. J Appl Microbiol 2001; 91:652–659 [CrossRef][PubMed]
    [Google Scholar]
  14. Jiang H, Wang X, Xiao C, Wang W, Zhao X et al. Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components. World J Microbiol Biotechnol 2015; 31:1605–1618 [CrossRef][PubMed]
    [Google Scholar]
  15. Joo HJ, Kim H-Y, Kim L-H, Lee S, Ryu J-G et al. A Brevibacillus sp. antagonistic to mycotoxigenic Fusarium spp. Biol Control 2015; 87:64–70 [CrossRef]
    [Google Scholar]
  16. Pessanha RR, Carramaschi IN, Dos Santos Mallet JR, Queiroz MMC, Zahner V. Evaluation of larvicidal activity and effects on post embrionary development of laboratory reared Lucilia cuprina (Wiedemann, 1830) (Diptera: Calliphoridae), treated with Brevibacillus laterosporus. J Invertebr Pathol 2015; 128:44–46 [CrossRef][PubMed]
    [Google Scholar]
  17. Ruiu L. Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects 2013; 4:476–492 [CrossRef][PubMed]
    [Google Scholar]
  18. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [CrossRef]
    [Google Scholar]
  19. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  20. Cerny G. Studies on the aminopeptidase test for the distinction of Gram-negative from gram-positive bacteria. European J Appl Microbiol Biotechnol 1978; 5:113–122 [CrossRef]
    [Google Scholar]
  21. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  22. Leifson E. Atlas of bacterial flagellation. Q Rev Biol 1960; 242:
    [Google Scholar]
  23. Nie G-X, Ming H, Li S, Zhou E-M, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012; 62:2650–2656 [CrossRef][PubMed]
    [Google Scholar]
  24. Nie G-X, Ming H, Li S, Zhou E-M, Cheng J et al. Geodermatophilus nigrescens sp. nov., isolated from a dry-hot valley. Antonie van Leeuwenhoek 2012; 101:811–817 [CrossRef][PubMed]
    [Google Scholar]
  25. Pridham TG, Gottlieb D. The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J Bacteriol 1948; 56:107–114 [CrossRef][PubMed]
    [Google Scholar]
  26. Gooch JW. Kirby-Bauer Method. In Gooch JW. editor Encyclopedic Dictionary of Polymers 704 Springer; 2011
    [Google Scholar]
  27. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  28. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology vol 4 Baltimore: Baltimore: Williams & Wilkins; 1989 pp 2452–2492
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, SM H, Chun J et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  30. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  33. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  34. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef]
    [Google Scholar]
  35. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  36. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  37. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  38. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAP denovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [CrossRef][PubMed]
    [Google Scholar]
  39. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  40. Freel KC, Sarilar V, Neuvéglise C, Devillers H, Friedrich A et al. Genome sequence of the yeast Cyberlindnera fabianii (Hansenula fabianii). Genome Announc 2014; 2:e00638-14 [CrossRef][PubMed]
    [Google Scholar]
  41. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. Antismash 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [CrossRef][PubMed]
    [Google Scholar]
  42. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012; 28:1033–1034 [CrossRef][PubMed]
    [Google Scholar]
  43. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  44. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [CrossRef][PubMed]
    [Google Scholar]
  45. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2012; 5:e9490 [CrossRef]
    [Google Scholar]
  46. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  47. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [CrossRef]
    [Google Scholar]
  48. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [CrossRef]
    [Google Scholar]
  49. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [CrossRef]
    [Google Scholar]
  50. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [CrossRef]
    [Google Scholar]
  51. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  52. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [CrossRef][PubMed]
    [Google Scholar]
  53. Johnson ET, Dunlap CA. Phylogenomic analysis of the Brevibacillus brevis clade: a proposal for three new Brevibacillus species, Brevibacillus fortis sp. nov., Brevibacillus porteri sp. nov. and Brevibacillus schisleri sp. nov. Antonie van Leeuwenhoek 2019; 112:991–999 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004462
Loading
/content/journal/ijsem/10.1099/ijsem.0.004462
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error