gen. nov., sp. nov., isolated from marine sediment within the family Free

Abstract

A Gram-stain-negative, aerobic coccus, designated CK1056, was isolated from coastal sediment of Xiaoshi Island, Weihai, PR China. Strain CK1056 was found to grow at 15–37 °C (optimum, 30 °C), with 0.5–6.5 % (w/v) NaCl (optimum, 3.5 %) and displayed alkaliphilic growth within the pH range of pH 6.5–10.0 (optimum, pH 8.0). The major fatty acids identified were iso-C and summed feature 3 (C 7 and/or C 6). The main polar lipids consisted of aminophosphoglycolipid and phosphatidylethanolamine. The predominant respiratory quinone was MK-7. The G+C content of the genomic DNA was 54.0 mol%. The result of the 16S rRNA gene sequence analysis confirmed the affiliation of this micro-organism to the family , with KCTC 12865 as its closest relative with only 88.0 % sequence similarity. From the taxonomic data obtained in this study, we propose that the new marine isolate be placed into a novel species within a novel genus in the family , phylum , for which the name gen. nov., sp. nov. is proposed. The type strain is CK1056 (=KCTC 72798=MCCC 1H00425).

Funding
This study was supported by the:
  • Instituto Nacional de Ciência e Tecnologia da Criosfera (BR) (Award 2019FY100700)
    • Principle Award Recipient: Zong-Jun Du
  • the National Natural Science Foundation of China (Award 31770002)
    • Principle Award Recipient: Zong-Jun Du
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004458
2020-09-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/11/5654.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004458&mimeType=html&fmt=ahah

References

  1. Hedlund BP, Gosink JJ, Staley JT. Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 1997; 72:29–38 [View Article][PubMed]
    [Google Scholar]
  2. Albrecht W, Fischer A, Smida J, Stackebrandt E. Verrucomicrobium spinosum, a Eubacterium representing an ancient line of descent. Syst Appl Microbiol 1987; 10:57–62 [View Article]
    [Google Scholar]
  3. Spring S, Bunk B, Spröer C, Schumann P, Rohde M et al. Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum. ISEM J 2016; 10:2801–2816 [View Article][PubMed]
    [Google Scholar]
  4. Cho J-C, Vergin KL, Morris RM, Giovannoni SJ. Lentisphaera araneosa gen. nov., sp. nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ Microbiol 2004; 6:611–621 [View Article][PubMed]
    [Google Scholar]
  5. Choo Y-J, Lee K, Song J, Cho J-C. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ‘Verrucomicrobia’. Int J Syst Evol Microbiol 2007; 57:532–537 [View Article][PubMed]
    [Google Scholar]
  6. Yoon J, Matsuo Y, Matsuda S, Adachi K, Kasai H et al. Cerasicoccus arenae gen. nov., sp. nov., a carotenoid-producing marine representative of the family Puniceicoccaceae within the phylum ‘Verrucomicrobia’, isolated from marine sand. Int J Syst Evol Microbiol 2007; 57:2067–2072 [View Article][PubMed]
    [Google Scholar]
  7. Lin S-Y, Hameed A, Liu Y-C, Hsu Y-H, Hung M-H et al. Ruficoccus amylovorans gen. nov., sp. nov., an amylolytic and nitrate-reducing diazotroph of the family Puniceicoccaceae. Int J Syst Evol Microbiol 2017; 67:956–962 [View Article][PubMed]
    [Google Scholar]
  8. Yoon J, Yasumoto-Hirose M, Matsuo Y, Nozawa M, Matsuda S et al. Pelagicoccus mobilis gen. nov., sp. nov., Pelagicoccus albus sp. nov. and Pelagicoccus litoralis sp. nov., three novel members of subdivision 4 within the phylum 'Verrucomicrobia', isolated from seawater by in situ cultivation. Int J Syst Evol Microbiol 2007; 57:1377–1385 [View Article][PubMed]
    [Google Scholar]
  9. Yoon J, Yasumoto-Hirose M, Katsuta A, Sekiguchi H, Matsuda S et al. Coraliomargarita akajimensis gen. nov., sp. nov., a novel member of the phylum ‘Verrucomicrobia’ isolated from seawater in Japan. Int J Syst Evol Microbiol 2007; 57:959–963 [View Article][PubMed]
    [Google Scholar]
  10. Parte AC, Parte Aidan C. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  11. Liu Q-Q, Wang Y, Li J, Du Z-J, Chen G-J. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014; 64:2204–2209 [View Article][PubMed]
    [Google Scholar]
  12. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  13. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406 [View Article][PubMed]
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  18. Zwickl D, Holder M. Model parameterization, prior distributions, and the general time-reversible model in Bayesian phylogenetics. Syst Biol 2004; 53:877–888 [View Article][PubMed]
    [Google Scholar]
  19. Li R, Yu C, Li Y, Lam T-W, Yiu S-M et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009; 25:1966–1967 [View Article][PubMed]
    [Google Scholar]
  20. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–D462 [View Article][PubMed]
    [Google Scholar]
  21. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  22. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003; 4:41–44 [View Article][PubMed]
    [Google Scholar]
  23. Hussain S, Wivagg CN, Szwedziak P, Wong F, Schaefer K et al. Mreb filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife 2018; 7:pii: e32471 [View Article]
    [Google Scholar]
  24. Haeusser DP, Margolin W. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat Rev Microbiol 2016; 14:305–319 [View Article][PubMed]
    [Google Scholar]
  25. Bagchi A, Ghosh TC. A structural study towards the understanding of the interactions of SoxY, SoxZ, and SoxB, leading to the oxidation of sulfur anions via the novel global sulfur oxidizing (SOX) operon. Biochem Biophys Res Commun 2005; 335:609–615 [View Article][PubMed]
    [Google Scholar]
  26. Vignais PM, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 2007; 107:4206–4272 [View Article][PubMed]
    [Google Scholar]
  27. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  28. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  30. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  31. Luke S. Two fast tree-creation algorithms for genetic programming. IEEE 2000; 4:274–283 [View Article]
    [Google Scholar]
  32. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 2016; 44:W232–W235 [View Article][PubMed]
    [Google Scholar]
  33. Letunic I, Bork P, Ivica L, Peer B. Interactive tree of life (iTOL) V4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article][PubMed]
    [Google Scholar]
  34. Aygan A, Arikan B. An overview on bacterial motility detection. Int J Agr Biol 2007193–196
    [Google Scholar]
  35. Perry LB. Gliding motility in some non-spreading flexibacteria. J Appl Bacteriol 1973; 36:227–232 [View Article]
    [Google Scholar]
  36. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization. In Gerbardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Sociey for Microbiology; 1994 pp 607–654
    [Google Scholar]
  37. CLSI Performance Standards for Antimicrobial Susceptibility Testing, 28th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2018
    [Google Scholar]
  38. Cowan ST. Manual for the identification of medical bacteria. Proc R Soc Med 1966; 59:468
    [Google Scholar]
  39. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  40. Reinerm K. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J of Liq Chromatography 1982; 5:2359–2367
    [Google Scholar]
  41. Athalye M, Noble WC, Minnikin DE. Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Bacteriol 1985; 58:507–512 [View Article]
    [Google Scholar]
  42. Mavromatis K, Abt B, Brambilla E, Lapidus A, Copeland A et al. Complete genome sequence of Coraliomargarita akajimensis type strain (04OKA010-24). Stand Genomic Sci 2010; 2:290–299 [View Article][PubMed]
    [Google Scholar]
  43. Zhou L-Y, Wang N-N, Mu D-S, Liu Y, Du Z-J. Coraliomargarita sinensis sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2019; 69:701–707 [View Article][PubMed]
    [Google Scholar]
  44. Yoon J, Oku N, Matsuda S, Kasai H, Yokota A. Pelagicoccus croceus sp. nov., a novel marine member of the family Puniceicoccaceae within the phylum 'Verrucomicrobia' isolated from seagrass. Int J Syst Evol Microbiol 2007; 57:2874–2880 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004458
Loading
/content/journal/ijsem/10.1099/ijsem.0.004458
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed