1887

Abstract

A Gram-stain-negative, strictly aerobic bacterium, designated strain PeD5, was isolated from a green alga from the Nakdong river of the Republic of Korea. Cells were non-motile cocci, catalase-negative and oxidase-positive. Growth of PeD5 was observed at 25–40 °C (optimum, 35 °C) and pH 5.0–10.0 (optimum, pH 7–8), and in the presence of 0–0.25% (w/v) NaCl (optimum, 0%). PeD5 contained C, Cω7 11-methyl, summed feature 3 (comprising Cω7 and/or Cω6) and summed feature 8 (comprising Cω7 and/or Cω6) as major cellular fatty acids (>5%) and ubiquinone-10 as the sole isoprenoid quinone. Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid and an unidentified aminolipid were detected as major polar lipids. The genomic DNA G+C content of PeD5 was 71.0 mol%. PeD5 was most closely related to HS-69 with a 97.6% 16S rRNA sequence similarity and shared less than 96.3% 16S rRNA sequence similarities with type strains of other species. Phylogenetic analysis based on 16S rRNA gene sequences indicated that PeD5 formed a phyletic lineage with HS-69 within the genus . On the basis of results of phenotypic, chemotaxonomic and molecular analysis, strain PeD5 clearly represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PeD5 (=KACC 19925=JCM 33309).

Funding
This study was supported by the:
  • Ministry of Environment (KR) (Award NIBR No. 2020-02-001)
    • Principle Award Recipient: Che Ok Jeon
  • National Research Foundation (KR) (Award 2017M3C1B5019250)
    • Principle Award Recipient: Che Ok Jeon
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004454
2020-09-14
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/11/5634.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004454&mimeType=html&fmt=ahah

References

  1. Rihs JD, Brenner DJ, Weaver RE, Steigerwalt AG, Hollis DG et al. Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 1993; 31:3275–3283 [View Article][PubMed]
    [Google Scholar]
  2. Furuhata K, Miyamoto H, Goto K, Kato Y, Hara M et al. Roseomonas stagni sp. nov., isolated from pond water in Japan. J Gen Appl Microbiol 2008; 54:167–171 [View Article][PubMed]
    [Google Scholar]
  3. Baik KS, Park SC, Choe HN, Kim SN, Moon J-H et al. Roseomonas riguiloci sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2012; 62:3024–3029 [View Article][PubMed]
    [Google Scholar]
  4. Lee JH, Kim MS, Baik KS, Kim HM, Lee KH et al. Roseomonas wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2015; 65:4049–4054 [View Article][PubMed]
    [Google Scholar]
  5. Furuhata K, Ishizaki N, Edagawa A, Fukuyama M. Roseomonas tokyonensis sp. nov. isolated from a biofilm sample obtained from a cooling tower in Tokyo, Japan. Biocontrol Sci 2013; 18:205–209 [View Article][PubMed]
    [Google Scholar]
  6. Kim MS, Baik KS, Park SC, Rhee MS, Oh H-M et al. Roseomonas frigidaquae sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 2009; 59:1630–1634 [View Article][PubMed]
    [Google Scholar]
  7. Hyeon JW, Jeon CO. Roseomonas aerofrigidensis sp. nov., isolated from an air conditioner. Int J Syst Evol Microbiol 2017; 67:4039–4044 [View Article][PubMed]
    [Google Scholar]
  8. Lee Y, Jeon CO. Roseomonas aeriglobus sp. nov., isolated from an air-conditioning system. Antonie van Leeuwenhoek 2018; 111:343–351 [View Article][PubMed]
    [Google Scholar]
  9. Kim MC, Rim S, Pak S, Ren L, Zhang Y et al. Roseomonas arcticisoli sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2016; 66:4057–4064 [View Article][PubMed]
    [Google Scholar]
  10. Kim D-U, Lee H, Kim S-G, Ka J-O. Roseomonas terricola sp. nov., isolated from agricultural soil. Int J Syst Evol Microbiol 2017; 67:4836–4841 [View Article][PubMed]
    [Google Scholar]
  11. Yoon J-H, Kang S-J, Oh HW, Oh T-K. Roseomonas terrae sp. nov. Int J Syst Evol Microbiol 2007; 57:2485–2488 [View Article][PubMed]
    [Google Scholar]
  12. Chaudhary DK, Kim J. Roseomonas nepalensis sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017; 67:981–987 [View Article][PubMed]
    [Google Scholar]
  13. Jiang C-Y, Dai X, Wang B-J, Zhou Y-G, Liu S-J. Roseomonas lacus sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 2006; 56:25–28 [View Article][PubMed]
    [Google Scholar]
  14. Subhash Y, Bang JJ, You TH, Lee S-S. Roseomonas rubra sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66:3821–3827 [View Article][PubMed]
    [Google Scholar]
  15. Subhash Y, Lee S-S. Roseomonas suffusca sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2017; 67:2390–2396 [View Article][PubMed]
    [Google Scholar]
  16. Sánchez-Porro C, Gallego V, Busse H-J, Kämpfer P, Ventosa A. Transfer of Teichococcus ludipueritiae and Muricoccus roseus to the genus Roseomonas, as Roseomonas ludipueritiae comb. nov. and Roseomonas rosea comb. nov., respectively, and emended description of the genus Roseomonas. Int J Syst Evol Microbiol 2009; 59:1193–1198 [View Article][PubMed]
    [Google Scholar]
  17. Kouzuma A, Watanabe K. Exploring the potential of algae/bacteria interactions. Curr Opin Biotechnol 2015; 33:125–129 [View Article][PubMed]
    [Google Scholar]
  18. Lee Y, Jeon CO. Cohnella algarum sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int J Syst Evol Microbiol 2017; 67:4767–4772 [View Article][PubMed]
    [Google Scholar]
  19. Lee Y, Jeon CO. Kaistia algarum sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int J Syst Evol Microbiol 2018; 68:3028–3033 [View Article][PubMed]
    [Google Scholar]
  20. Lee Y, Jeon CO. Sphingobium paulinellae sp. nov. and Sphingobium algicola sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int J Syst Evol Microbiol 2017; 67:5165–5171 [View Article][PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  22. Lee Y, Park HY, Jeon CO. Amnimonas aquatica gen. nov., sp. nov., isolated from a freshwater river. Curr Microbiol 2019; 76:478–484 [View Article][PubMed]
    [Google Scholar]
  23. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  25. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  27. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  30. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  31. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. editor Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  32. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  33. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  36. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004454
Loading
/content/journal/ijsem/10.1099/ijsem.0.004454
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error