sp. nov., isolated from the saline Lake Tus in Siberia Free

Abstract

A halotolerant, psychrotolerant and methylotrophic methanogen, strain SY-01, was isolated from the saline Lake Tus in Siberia. Cells of strain SY-01 were non-motile, cocci and 0.8–1.0 µm in diameter. The only methanogenic substrate utilized by strain SY-01 was methanol. The temperature range of growth for strain SY-01 was from 4 to 40 °C and the optimal temperature for growth was 30 °C. The pH range of growth was from pH 7.2 to 9.0, with optimal growth at pH 8.0. The NaCl range of growth was 0–1.55 M with optimal growth at 0.51 M NaCl. The G+C content of the genome of strain SY-01 was 43.6 mol % as determined by genome sequencing. Phylogenetic analysis revealed that strain SY-01 was most closely related to SD1 (97.3 % 16S rRNA gene sequence similarity), and had 95.5–97.2 % similarities to other species with valid names. Genome relatedness between strain SY-01 and DSM 21339 was computed using average nucleotide identity and digital DNA–DNAhybridization, which yielded values of 79.7 and 21.7 %, respectively. Based on morphological, phenotypic, phylogenetic and genomic relatedness data presented here, it is evident that strain SY-01 represents a novel species of the genus , and the name sp. nov. is proposed. The type strain is SY-01 (=BCRC AR10051=NBRC 113166 =DSM 107642).

Funding
This study was supported by the:
  • Ministry of Science and Technology, Taiwan (Award MOST 107-3113-M-005-001)
    • Principle Award Recipient: Mei-Chin Lai
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004453
2020-09-11
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/10/5586.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004453&mimeType=html&fmt=ahah

References

  1. Boehrer B, Schultze M. Stratification of lakes. Rev Geophys 2008; 46:RG2005 [View Article]
    [Google Scholar]
  2. Chen S-C, Huang H-H, Lai M-C, Weng C-Y, Chiu H-H et al. Methanolobus psychrotolerans sp. nov., a psychrotolerant methanoarchaeon isolated from a saline meromictic lake in Siberia. Int J Syst Evol Microbiol 2018; 68:1378–1383 [View Article][PubMed]
    [Google Scholar]
  3. Rogozin DY, Genova SN, Gulati RD, Degermendzhy AG. Some generalizations based on stratification and vertical mixing in meromictic lake Shira, Russia, in the period 2002–2009. Aquat Ecol 2010; 44:485–496 [View Article]
    [Google Scholar]
  4. König H, Stetter KO. Isolation and characterization of Methanolobus tindarius sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 1982; 3:478–490 [View Article]
    [Google Scholar]
  5. Liu Y, Boone DR, Choy C. Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int J Syst Bacteriol 1990; 40:111–116 [View Article]
    [Google Scholar]
  6. Oremland RS, Boone DR. Notes: Methanolobus taylorii sp. nov., a new methylotrophic, estuarine methanogen. Int J Syst Bacteriol 1994; 44:573–575 [View Article]
    [Google Scholar]
  7. Kadam PC, Ranade DR, Mandelco L, Boone DR. Isolation and characterization of Methanolobus bombayensis sp. nov., a methylotrophic methanogen that requires high concentrations of divalent cations. Int J Syst Bacteriol 1994; 44:603–607 [View Article]
    [Google Scholar]
  8. Kadam PC, Boone DR. Physiological characterization and emended description of Methanolobus vulcani . Int J Syst Bacteriol 1995; 45:400–402 [View Article]
    [Google Scholar]
  9. Zhang G, Jiang N, Liu X, Dong X. Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, "Methanolobus psychrophilus" sp. nov., prevalent in Zoige wetland of the Tibetan plateau. Appl Environ Microbiol 2008; 74:6114–6120 [View Article][PubMed]
    [Google Scholar]
  10. Doerfert SN, Reichlen M, Iyer P, Wang M, Ferry JG. Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int J Syst Evol Microbiol 2009; 59:1064–1069 [View Article][PubMed]
    [Google Scholar]
  11. Mochimaru H, Tamaki H, Hanada S, Imachi H, Nakamura K et al. Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int J Syst Evol Microbiol 2009; 59:714–718 [View Article][PubMed]
    [Google Scholar]
  12. Wu S-Y, Lai M-C. Methanogenic archaea isolated from Taiwan’s Chelungpu fault. Appl Environ Microbiol 2011; 77:830–838 [View Article][PubMed]
    [Google Scholar]
  13. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43:260–296 [View Article][PubMed]
    [Google Scholar]
  14. Sowers K, Noll K. Techniques for anaerobic growth. Archaea: a Laboratory Manual 1995; 2:15–48
    [Google Scholar]
  15. Wolin EA, Wolin MJ, Wolfe RS. Formation of methane by bacterial extracts. J Biol Chem 1963; 238:2882–2886[PubMed]
    [Google Scholar]
  16. Ferguson TJ, Mah RA. Isolation and characterization of an H2-oxidizing thermophilic methanogen. Appl Environ Microbiol 1983; 45:265–274 [View Article][PubMed]
    [Google Scholar]
  17. Lai M-C, Lin C-C, Yu P-H, Huang Y-F, Chen S-C. Methanocalculus chunghsingensis sp. nov., isolated from an estuary and a marine fishpond in Taiwan. Int J Syst Evol Microbiol 2004; 54:183–189 [View Article][PubMed]
    [Google Scholar]
  18. Lai M-C, Chen S-C, Shu C-M, Chiou M-S, Wang C-C et al. Methanocalculus taiwanensis sp. nov., isolated from an estuarine environment. Int J Syst Evol Microbiol 2002; 52:1799–1806 [View Article][PubMed]
    [Google Scholar]
  19. Wu S-Y, Chen S-C, Lai M-C. Methanofollis formosanus sp. nov., isolated from a fish pond. Int J Syst Evol Microbiol 2005; 55:837–842 [View Article][PubMed]
    [Google Scholar]
  20. Chen S-C, Chen M-F, Lai M-C, Weng C-Y, Wu S-Y et al. Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano. Int J Syst Evol Microbiol 2015; 65:2141–2147 [View Article][PubMed]
    [Google Scholar]
  21. Weng C-Y, Chen S-C, Lai M-C, Wu S-Y, Lin S et al. Methanoculleus taiwanensis sp. nov., a methanogen isolated from deep marine sediment at the deformation front area near Taiwan. Int J Syst Evol Microbiol 2015; 65:1044–1049 [View Article][PubMed]
    [Google Scholar]
  22. Gray JP, Herwig RP. Phylogenetic analysis of the bacterial communities in marine sediments. Appl Environ Microbiol 1996; 62:4049–4059 [View Article][PubMed]
    [Google Scholar]
  23. Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 1999; 46:327–338 [View Article][PubMed]
    [Google Scholar]
  24. Lai MC, Shih CJ. Characterization of Methanococcus voltaei strain P2F9701a: a new methanogen isolated from estuarine environment. Curr Microbiol 2001; 42:432–437 [View Article][PubMed]
    [Google Scholar]
  25. Lai MC, Chen SC. Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int J Syst Evol Microbiol 2001; 51:1873–1880 [View Article][PubMed]
    [Google Scholar]
  26. Jarrell KF, Faguy D, Hebert AM, Kalmokoff ML. A general method of isolating high molecular weight DNA from methanogenic archaea (archaebacteria). Can J Microbiol 1992; 38:65–68 [View Article][PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  29. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  30. Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol 2013; 20:714–737 [View Article][PubMed]
    [Google Scholar]
  31. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016; 32:2103–2110 [View Article][PubMed]
    [Google Scholar]
  32. Vaser R, Sović I, Nagarajan N, Sikic M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article][PubMed]
    [Google Scholar]
  33. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  34. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  37. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article][PubMed]
    [Google Scholar]
  38. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004453
Loading
/content/journal/ijsem/10.1099/ijsem.0.004453
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed