1887

Abstract

Two Gram-stain-negative, aerobic, non-motile bacterial strains, 36D10-4-7 and 30C10-4-7, were isolated from bark canker tissue of , respectively. 16S rRNA gene sequence analysis revealed that strain 36D10-4-7 shows 98.0 % sequence similarity to DSM 7418, and strain 30C10-4-7 shows highest sequence similarity to H-12 (95.6 %). Average nucleotide identity analysis indicates that strain 36D10-4-7 is a novel member different from recognized species in the genus . The main fatty acids and respiratory quinone detected in strain 36D10-4-7 are C 7 and/or C 6 and Q-10, respectively. The polar lipids are diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, aminolipid, phosphatidylethanolamine, sphingoglycolipid, two uncharacterized phospholipids and two uncharacterized lipids. For strain 30C10-4-7, the major fatty acids and menaquinone are iso-C, C 7 and/or C 6 and iso-C 3-OH and MK-7, respectively. The polar lipid profile includes phosphatidylethanolamine, phospholipids, two aminophospholipids and six unidentified lipids. Based on phenotypic and genotypic characteristics, these two strains represent two novel species within the genera and . The name sp. nov. (type strain 36D10-4-7=CFCC 13112=KCTC 52799) and sp. nov. (type strain 30C10-4-7=CFCC 13069=KCTC 52797) are proposed.

Funding
This study was supported by the:
  • National Microbial Resources Collection (Award NMRC-2020–7)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004451
2020-09-14
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/11/5627.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004451&mimeType=html&fmt=ahah

References

  1. Validation list no. 34 Validation of the publication of new names and new combinations previously effectively published outside the IJSB: list no. 34. Int J Syst Bacteriol 1990; 40:320–321 [View Article]
    [Google Scholar]
  2. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99–119 [View Article][PubMed]
    [Google Scholar]
  3. Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 1997; 63:3068–3078 [View Article][PubMed]
    [Google Scholar]
  4. Tabata K, Kasuya KI, Abe H, Masuda K, Doi Y. Poly(aspartic acid) degradation by a Sphingomonas sp. isolated from freshwater. Appl Environ Microbiol 1999; 65:4268–4270 [View Article][PubMed]
    [Google Scholar]
  5. Vachée A, Mossel DA, Leclerc H. Antimicrobial activity among Pseudomonas and related strains of mineral water origin. J Appl Microbiol 1997; 83:652–658 [View Article][PubMed]
    [Google Scholar]
  6. Oie S, Oomaki M, Yorioka K, Tatsumi T, Amasaki M et al. Microbial contamination of 'sterile water' used in Japanese hospitals. J Hosp Infect 1998; 38:61–65 [View Article][PubMed]
    [Google Scholar]
  7. Kim S-J, Moon J-Y, Lim J-M, Ahn J-H, Weon H-Y et al. Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 2014; 64:926–932 [View Article][PubMed]
    [Google Scholar]
  8. Xie C-H, Yokota A. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int J Syst Evol Microbiol 2006; 56:889–893 [View Article][PubMed]
    [Google Scholar]
  9. Liu F, Zhan R-L, He Z-Q. First report of bacterial dry rot of Mango Caused by Sphingomonas sanguinis in China. Plant Dis 2018; 102:2632 [View Article]
    [Google Scholar]
  10. Ryan MP, Adley CC. Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism. J Hosp Infect 2010; 75:153–157 [View Article][PubMed]
    [Google Scholar]
  11. Kim Y-J, Park JY, Balusamy SR, Huo Y, Nong LK et al. Comprehensive genome analysis on the novel Species Sphingomonas panacis DCY99Treveals Insights into iron tolerance of ginseng. Int J Mol Sci 2020; 21:2019–2152 [View Article][PubMed]
    [Google Scholar]
  12. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983; 33:580–598 [View Article]
    [Google Scholar]
  13. Holmes B, Owen RJ, Hollis DG. Flavobacterium spiritivorum, a new species isolated from human clinical specimens. Int J Syst Bacteriol 1982; 32:157–165 [View Article]
    [Google Scholar]
  14. Albert RA, Waas NE, Pavlons SC, Pearson JL, Ketelboeter L et al. Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 2013; 63:952–958 [View Article][PubMed]
    [Google Scholar]
  15. Siddiqi MZ, Muhammad Shafi S, Choi KD, Im W-T, Aslam Z. Sphingobacterium jejuense sp. nov., with ginsenoside-converting activity, isolated from compost. Int J Syst Evol Microbiol 2016; 66:4433–4439 [View Article][PubMed]
    [Google Scholar]
  16. Choi H-A, Lee S-S. Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii. Int J Syst Evol Microbiol 2012; 62:2559–2564 [View Article][PubMed]
    [Google Scholar]
  17. Feng H, Zeng Y, Huang Y. Sphingobacterium paludis sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 2014; 64:3453–3458 [View Article][PubMed]
    [Google Scholar]
  18. Wang X, Zhang C-F, Yu X, Hu G, Yang H-X et al. Sphingobacterium chuzhouense sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2016; 66:4968–4974 [View Article][PubMed]
    [Google Scholar]
  19. Sun J-Q, Liu M, Wang X-Y, Xu L, Wu X-L. Sphingobacterium suaedae sp. nov., isolated from the rhizosphere soil of Suaeda corniculata. Int J Syst Evol Microbiol 2015; 65:4508–4513 [View Article][PubMed]
    [Google Scholar]
  20. Jiang S, Chen M, Su S, Yang M, Li A et al. Sphingobacterium arenae sp. nov., isolated from sandy soil. Int J Syst Evol Microbiol 2014; 64:248–253 [View Article][PubMed]
    [Google Scholar]
  21. Schmidt VSJ, Wenning M, Scherer S. Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 2012; 62:1506–1511 [View Article][PubMed]
    [Google Scholar]
  22. Zhang J, Zheng J-W, Cho BC, Hwang CY, Fang C et al. Sphingobacterium wenxiniae sp. nov., a cypermethrin-degrading species from activated sludge. Int J Syst Evol Microbiol 2012; 62:683–687 [View Article][PubMed]
    [Google Scholar]
  23. Li Y, Song L-M, Guo M-W, Wang L-F, Liang W-X. Sphingobacterium populi sp. nov., isolated from bark of Populus × euramericana. Int J Syst Evol Microbiol 2016; 66:3456–3462 [View Article][PubMed]
    [Google Scholar]
  24. Long X, Liu B, Zhang S, Zhang Y, Zeng Z et al. Sphingobacterium griseoflavum sp. nov., isolated from the insect Teleogryllus occipitalis living in deserted cropland. Int J Syst Evol Microbiol 2016; 66:1956–1961 [View Article][PubMed]
    [Google Scholar]
  25. Cheng JF, Guo JX, Bian YN, Chen ZL, Li CL et al. Sphingobacterium athyrii sp. nov., a cellulose- and xylan-degrading bacterium isolated from a decaying fern (Athyrium wallichianum Ching). Int J Syst Evol Microbiol 2019; 69:752–760 [View Article][PubMed]
    [Google Scholar]
  26. Yu Y, Zhang W, Chen G, Gao Y, Wang J. Preparation of petroleum-degrading bacterial agent and its application in remediation of contaminated soil in Shengli Oil Field, China. Environ Sci Pollut Res Int 2014; 21:7929–7937 [View Article][PubMed]
    [Google Scholar]
  27. Baker GC, Smith JJ, Cowan DA. Review and reanalysis of domain-specific 16S primers. J Microbiol Methods 2003; 55:541–555 [View Article][PubMed]
    [Google Scholar]
  28. Lane DJ. 16S/23S rRNA sequencing. In Goodfellow M, Stackebrandt E. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  32. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  33. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004; 32:11–16 [View Article][PubMed]
    [Google Scholar]
  34. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  37. Jenkins D, Richard MG, Daigger GT. Manual on the Causes and Control of Activated Sludge Bulking and Foaming Water Research Commission; 1986
    [Google Scholar]
  38. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Manual of Methods for General and Microbiology Washington, D C: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  39. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981
    [Google Scholar]
  40. Gomori G. Preparation of buffers for use in enzyme studies. In Colowick SP, Kaplan NO. (editors) Methods in Enzymology 274 NewYork: Academic Press; 1955 pp 138–146
    [Google Scholar]
  41. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI, Technical notes 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  42. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  43. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  44. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  45. Du H-J, Zhang Y-Q, Liu H-Y, Su J, Wei Y-Z, HJ D et al. Allonocardiopsis opalescens gen. nov., sp. nov., a new member of the suborder Streptosporangineae, from the surface-sterilized fruit of a medicinal plant. Int J Syst Evol Microbiol 2013; 63:900–904 [View Article][PubMed]
    [Google Scholar]
  46. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997; 47:1129–1133 [View Article][PubMed]
    [Google Scholar]
  47. Choi T-E, Liu Q-M, Yang J-E, Sun S, Kim S-Y et al. Sphingomonas ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 2010; 48:760–766 [View Article][PubMed]
    [Google Scholar]
  48. Wang Z, Zeng Q, Fang Z, Zhu D, Xu D et al. Sphingomonas aracearum sp. nov., isolated from rhizospheric soil of Araceae plants. Int J Syst Evol Microbiol 2019; 69:2972–2978 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004451
Loading
/content/journal/ijsem/10.1099/ijsem.0.004451
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error