1887

Abstract

A Gram-stain-negative, facultatively anaerobic, yellow-pigmented, non-motile, rod-shaped bacterium, designated zrk23, was isolated from a deep-sea cold seep. The strain was characterized by a polyphasic approach to clarify its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequences placed zrk23 within the genus and showed the highest similarity to FM6 (97.93 %). Growth occurs at temperatures from 16 to 45 °C (optimum, 30 °C), at pH values between pH 6.0 and 8.5 (optimum, pH 7.0) and in 0–5.0 % (w/v) NaCl (optimum, 1.5 %). The major fatty acids were C, C 2-OH and summed feature 8 (Cω7 and/or Cω6). The major isoprenoid quinone was ubiquinone-10. Predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, one unidentified phosphoglycolipid, three unidentified glycolipids and three unidentified phospholipids. The G+C content of the genomic DNA was 64.69 %. The average nucleotide identity values between zrk23 and the most closely related available genome, of FM6, was 82.21 %, indicating that zrk23 was clearly distinguished from . The analysis of genome sequence of zrk23 revealed that there were many genes associated with degradation of aromatic compounds existing in the genome of zrk23. As a result of the combination of the results of phylogenetic analysis and phenotypic and chemotaxonomic data, zrk23 was considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is zrk23 (=KCTC 72896=MCCC 1K04416).

Funding
This study was supported by the:
  • National Key R and D Program of China (Award 2018YFC0310800)
    • Principle Award Recipient: Chaomin Sun
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004448
2020-09-14
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/10/5561.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004448&mimeType=html&fmt=ahah

References

  1. Kosako Y, Yabuuchi E, Naka T, Fujiwara N, Kobayashi K. Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 2000; 44:563–575 [View Article][PubMed]
    [Google Scholar]
  2. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 1990; 34:99–119 [View Article][PubMed]
    [Google Scholar]
  3. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  4. Pal R, Bala S, Dadhwal M, Kumar M, Dhingra G et al. Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 2005; 55:1965–1972 [View Article][PubMed]
    [Google Scholar]
  5. Pal R, Bhasin VK, Lal R. Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol 2006; 56:667–670 [View Article][PubMed]
    [Google Scholar]
  6. Chen C, Zheng Q, Wang Y-N, Yan X-J, Hao L-K et al. Stakelama pacifica gen. nov., sp. nov., a new member of the family Sphingomonadaceae isolated from the Pacific Ocean. Int J Syst Evol Microbiol 2010; 60:2857–2861 [View Article][PubMed]
    [Google Scholar]
  7. Hetharua B, Min D, Liao H, Guo W, Lin X et al. Sphingosinithalassobacter portus gen. nov., sp. nov., a novel member of the family Sphingomonadaceae isolated from surface seawater. Int J Syst Evol Microbiol 2019; 69:2834–2840 [View Article][PubMed]
    [Google Scholar]
  8. Zhao Q, Yue S, Bilal M, Hu H, Wang W et al. Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: Dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer. Sci Total Environ 2017; 609:1238–1247 [View Article][PubMed]
    [Google Scholar]
  9. Khara P, Roy M, Chakraborty J, Ghosal D, Dutta TK. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. FEBS Open Bio 2014; 4:290–300 [View Article][PubMed]
    [Google Scholar]
  10. Dong C, Bai X, Lai Q, Xie Y, Chen X et al. Draft genome sequence of Sphingobium sp. strain C100, a polycyclic aromatic hydrocarbon-degrading bacterium from the deep-sea sediment of the Arctic Ocean. Genome Announc 2014; 2:e01210–01213 [View Article][PubMed]
    [Google Scholar]
  11. Stolz A. Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 2009; 81:793–811 [View Article][PubMed]
    [Google Scholar]
  12. Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol 2011; 9:803–816 [View Article][PubMed]
    [Google Scholar]
  13. Zeng G, Chen M, Zeng Z. Risks of neonicotinoid pesticides. Science 2013; 340:1403 [View Article][PubMed]
    [Google Scholar]
  14. Zhang Y, Wang X, Barletta B, Simpson IJ, Blake DR et al. Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region. J Hazard Mater 2013; 250-251:403–411 [View Article][PubMed]
    [Google Scholar]
  15. Khardenavis AA, Kapley A, Purohit HJ. Phenol-mediated improved performance of active biomass for treatment of distillery wastewater. Int Biodeterior Biodegrad 2008; 62:38–45 [View Article]
    [Google Scholar]
  16. Gong B, Wu P, Huang Z, Li Y, Dang Z et al. Enhanced degradation of phenol by Sphingomonas sp. GY2B with resistance towards suboptimal environment through adsorption on kaolinite. Chemosphere 2016; 148:388–394 [View Article][PubMed]
    [Google Scholar]
  17. Macchi M, Martinez M, Tauil RMN, Valacco MP, Morelli IS et al. Insights into the genome and proteome of Sphingomonas paucimobilis strain 20006FA involved in the regulation of polycyclic aromatic hydrocarbon degradation. World J Microbiol Biotechnol 2018; 34: [View Article]
    [Google Scholar]
  18. Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH. Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis . Appl Environ Microbiol 1990; 56:1079–1086 [View Article][PubMed]
    [Google Scholar]
  19. Keck A, Conradt D, Mahler A, Stolz A, Mattes R et al. Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6. Microbiology 2006; 152:1929–1940 [View Article][PubMed]
    [Google Scholar]
  20. Deamer D, Akeson M, Branton D. Three decades of nanopore sequencing. Nat Biotechnol 2016; 34:518–524 [View Article][PubMed]
    [Google Scholar]
  21. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article][PubMed]
    [Google Scholar]
  22. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article][PubMed]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  25. Parales RE, Resnick SM. Aromatic ring hydroxylating dioxygenases. In Ramos J-L, Levesque RC. (editors) Pseudomonas: Volume 4 Molecular Biology of Emerging Issues Boston: MA: Springer US; 2006 pp 287–340
    [Google Scholar]
  26. Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT et al. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure 1998; 6:571–586 [View Article][PubMed]
    [Google Scholar]
  27. Zylstra GJ, Kim E. Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 1997; 19:408–414 [View Article][PubMed]
    [Google Scholar]
  28. Brezna B, Kweon O, Stingley RL, Freeman JP, Khan AA et al. Molecular characterization of cytochrome P450 genes in the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 2006; 71:522–532 [View Article][PubMed]
    [Google Scholar]
  29. Hetharua B, Min D, Liao H, Lin Li'an, Xu H et al. Litorivita pollutaquae gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae isolated from surface seawater of Xiamen Port, China. Int J Syst Evol Microbiol 2018; 68:3908–3913 [View Article][PubMed]
    [Google Scholar]
  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  33. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945
    [Google Scholar]
  34. Smibert R, Krieg N. Phenotypic Characterization. Methods for General and Molecular Bacteriology Washington, DC: Methods for general and molecular microbiology ASM Press; 1994 pp 607–654
    [Google Scholar]
  35. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  36. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  37. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  38. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Methods for General and Molecular Microbiology, 3rd ed. American Society of Microbiology; 2007 pp 330–393
    [Google Scholar]
  39. Glaeser SP, Kämpfer P. The family Sphingomonadaceae . The Prokaryotes SE–302 Berlin Heidelberg: Springer; 2014 pp 641–707
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004448
Loading
/content/journal/ijsem/10.1099/ijsem.0.004448
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error