1887

Abstract

Three aerobic, Gram-stain-negative, non-motile, rod-shaped bacteria, designated as strains SHINM1, ICHIJ1 and ICHIAU1, were isolated from surface river water (Saitama Prefecture, Japan). Phylogenetic analyses based on 16S rRNA and 40 marker gene sequences revealed that the strains formed a distinct phylogenetic lineage within the order . The three strains shared 100 % 16S rRNA gene similarity. Growth occurred at 15–30 °C and pH 6.0–9.5, but not in the presence of ≥1.0 % (w/v) NaCl. The isolates stained positive for intracellular polyphosphate granules. The major cellular fatty acids were C, summed feature 2 (C aldehyde and/or iso-C I and/or C 3-OH), summed feature 3 (C 7 and/or C 6) and summed feature 8 (C 7 and/or C 6). The major polar lipids were phosphatidylethanolamine and an unidentified phospholipid. The predominant quinone system of strain SHINM1 was ubiquinone-8 and its DNA G+C content was 56.7 mol%. Genome sequencing of the three isolates revealed a genome size of 2.29–2.43 Mbp and average nucleotide identity by orthology values of ≥98.9 %. Based on the results of phenotypic and phylogenetic analyses, strains SHINM1, ICHIJ1 and ICHIAU1 represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed, within a new family, fam. nov. of the order . The type strain is SHINM1 (=JCM 32071=NCIMB 15105).

Funding
This study was supported by the:
  • Ministry of Education, Culture, Sports, Science and Technology of Japan (Award Scientific Research (C) 19K12313)
    • Principle Award Recipient: Keiji Watanabe
  • Ministry of Education, Culture, Sports, Science and Technology of Japan (Award Grant-in-Aid for Young Scientists (B) 15K16122)
    • Principle Award Recipient: Keiji Watanabe
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004446
2020-09-11
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/10/5551.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004446&mimeType=html&fmt=ahah

References

  1. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA et al. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 1983; 10:257–263
    [Google Scholar]
  2. Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 2002; 28:141–155
    [Google Scholar]
  3. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 2011; 75:14–49 [View Article][PubMed]
    [Google Scholar]
  4. Crump BC, Hobbie JE. Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol Oceanogr 2005; 50:1718–1729
    [Google Scholar]
  5. Liu Z, Huang S, Sun G, Xu Z, Xu M. Phylogenetic diversity, composition and distribution of bacterioplankton community in the Dongjiang river, China. FEMS Microbiol Ecol 2012; 80:30–44 [View Article][PubMed]
    [Google Scholar]
  6. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article][PubMed]
    [Google Scholar]
  7. Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales . Int J Syst Evol Microbiol 2017; 67:1191–1205 [View Article][PubMed]
    [Google Scholar]
  8. Liu C-T, Lin S-Y, Hameed A, Liu Y-C, Hsu Y-H et al. Oryzomicrobium terrae gen. nov., sp. nov., of the family Rhodocyclaceae isolated from paddy soil. Int J Syst Evol Microbiol 2017; 67:183–189 [View Article][PubMed]
    [Google Scholar]
  9. Watanabe K, Komatsu N, Kitamura T, Ishii Y, Park H-D et al. Ecological niche separation in the Polynucleobacter subclusters linked to quality of dissolved organic matter: a demonstration using a high sensitivity cultivation-based approach. Environ Microbiol 2012; 14:2511–2525 [View Article][PubMed]
    [Google Scholar]
  10. Watanabe K, Komatsu N, Ishii Y, Negishi M. Effective isolation of bacterioplankton genus Polynucleobacter from freshwater environments grown on photochemically degraded dissolved organic matter. FEMS Microbiol Ecol 2009; 67:57–68 [View Article][PubMed]
    [Google Scholar]
  11. Barrow GI, Feltham RKA. Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  12. Jenkins D, Richards MG, Daigger GT. Manual on the Causes and Control of Activated Sludge Bulking and Foaming, 2nd ed. London: Lewis; 1993
    [Google Scholar]
  13. Watanabe K, Ishii Y, Komatsu N, Kitamura T, Watanabe M et al. Growth rates and tolerance to low water temperatures of freshwater bacterioplankton strains: ecological insights from shallow hypereutrophic lakes in Japan. Hydrobiologia 2017; 792:67–81
    [Google Scholar]
  14. Kim S-W, Suda W, Kim S, Oshima K, Fukuda S et al. Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res 2013; 20:241–253 [View Article][PubMed]
    [Google Scholar]
  15. Liu WT, Mirzabekov AD, Stahl DA. Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach. Environ Microbiol 2001; 3:619–629 [View Article][PubMed]
    [Google Scholar]
  16. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  17. Thompson JD, Higgins DG, Gibson TJ. clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  21. Gaby JC, Buckley DH. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS One 2012; 7:e42149 [View Article][PubMed]
    [Google Scholar]
  22. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  23. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36
    [Google Scholar]
  24. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241
    [Google Scholar]
  25. Katayama-Fujimura Y, Komatsu Y, Kuraishi H, Kaneko T. Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 1984; 48:3169–3172
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note no. 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article][PubMed]
    [Google Scholar]
  28. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  29. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  31. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018; 34:1037–1039 [View Article][PubMed]
    [Google Scholar]
  32. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  33. Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods 2013; 10:1196–1199 [View Article][PubMed]
    [Google Scholar]
  34. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed]
    [Google Scholar]
  35. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article][PubMed]
    [Google Scholar]
  36. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  37. Farkas M, Táncsics A, Kriszt B, Benedek T, Tóth EM et al. Zoogloea oleivorans sp. nov., a floc-forming, petroleum hydrocarbon-degrading bacterium isolated from biofilm. Int J Syst Evol Microbiol 2015; 65:274–279 [View Article][PubMed]
    [Google Scholar]
  38. Chou J-H, Jiang S-R, Cho J-C, Song J, Lin M-C et al. Azonexus hydrophilus sp. nov., a nifH gene-harbouring bacterium isolated from freshwater. Int J Syst Evol Microbiol 2008; 58:946–951 [View Article][PubMed]
    [Google Scholar]
  39. Bae H-S, Rash BA, Rainey FA, Nobre MF, Tiago I et al. Description of Azospira restricta sp. nov., a nitrogen-fixing bacterium isolated from groundwater. Int J Syst Evol Microbiol 2007; 57:1521–1526 [View Article][PubMed]
    [Google Scholar]
  40. Pfennig N. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae . Int J Syst Evol Microbiol 1978; 28:283–288
    [Google Scholar]
  41. Masters RA, Madigan M. Nitrogen metabolism in the phototrophic bacteria Rhodocyclus purpureus and Rhodospirillum tenue . J Bacteriol 1983; 155:222–227 [View Article][PubMed]
    [Google Scholar]
  42. Maszenan AM, Seviour RJ, Patel BKC, Schumann P. Quadricoccus australiensis gen. nov., sp. nov., a beta-proteobacterium from activated sludge biomass. Int J Syst Evol Microbiol 2002; 52:223–228 [View Article][PubMed]
    [Google Scholar]
  43. Horn MA, Ihssen J, Matthies C, Schramm A, Acker G et al. Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa . Int J Syst Evol Microbiol 2005; 55:1255–1265 [View Article][PubMed]
    [Google Scholar]
  44. Brune A, Ludwig W, Schink B. Propionivibrio limicola sp. nov., a fermentative bacterium specialized in the degradation of hydroaromatic compounds, reclassification of Propionibacter pelophilus as Propionivibrio pelophilus comb. nov. and amended description of the genus Propionivibrio . Int J Syst Evol Microbiol 2002; 52:441–444 [View Article][PubMed]
    [Google Scholar]
  45. Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M et al. Azoarcus gen. nov., nitrogen-fixing Proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Evol Microbiol 1993; 43:574–584
    [Google Scholar]
  46. Reinhold-Hurek B, Hurek T. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50 Pt 2:649–659 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004446
Loading
/content/journal/ijsem/10.1099/ijsem.0.004446
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error