1887

Abstract

A novel actinomycete strain, CT2-14, belonging to the genus , was isolated from a soil sample collected from Phichit Province, Thailand. The taxonomic position of the strain was characterized using a polyphasic approach. The strain grew at 15–40 °C (optimum, 28–37 °C), pH 6–11 (optimum, pH 6–8) and on an International Project 2 with 4 % (w/v) NaCl agar plate. -diaminopimelic acid was detected in the cell-wall peptidoglycan. Ribose, arabinose and galactose were detected in its whole-cell hydrolysates. Mycolic acids were present. The strain contained C, summed feature 3, C 10-methyl and C 9 as the major fatty acids and MK-8(Hω-cycl) as the major menaquinone. The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol mannosides. Strain CT2-14 showed the highest 16S rRNA gene similarity to JCM 11307 (98.4 %), JCM 11438 (98.2 %) and JCM 13032 (98.0 %). The draft genome of strain CT2-14 was 7.37 Mb with 6685 coding sequences with an average G+C content of 67.9 mol %. Based on the phylogenomic tree analysis, the strain was closely related to NBRC 100131. On the basis of polyphasic and genome analyses, strain CT2-14 represented a novel species of the genus for which the name sp. nov. is proposed. The type strain is CT2-14 (=JCM 33775=TISTR 2838).

Funding
This study was supported by the:
  • Ratchadapiseksomphot Endowment Fund, Chulalongkorn University for a post-doctoral fellowship
    • Principle Award Recipient: Pawina Kanchanasin
  • Grant for International Research Integration, Research Pyramid, Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University (Award GCURP_58_01_33_01)
    • Principle Award Recipient: Somboon Tanasupawat
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004432
2020-09-08
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/10/5432.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004432&mimeType=html&fmt=ahah

References

  1. Trevisan V. I Generi E le Specie delle Bacteriaceae Milano: Zanaboni and Gabuzzi; 1889
    [Google Scholar]
  2. Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I et al. The Actinobacteria Part A. Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York, NY: Springer; 2012 pp 1–1034
    [Google Scholar]
  3. Goodfellow M, Lechevalier MP. Genus Nocardia Trevisan 1889, 9AL . In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology 4 Baltimore: Williams & Wilkins; 1989 pp 2348–2361
    [Google Scholar]
  4. Goodfellow M, Lechevalier MP. Genus Nocardia Trevisan 1889, 9AL . In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology 2 Baltimore: The Williams & Wilkins Co; 1986 pp 1459–1471
    [Google Scholar]
  5. Gordon RE, Mihm JM. A comparative study of some strains received as nocardiae. J Bacteriol 1957; 73:15–27 [View Article][PubMed]
    [Google Scholar]
  6. Gordon RE, Mihm JM. The type species of the genus Nocardia . J Gen Microbiol 1962; 27:1–10 [View Article][PubMed]
    [Google Scholar]
  7. Goodfellow M, Isik K, Yates E. Actinomycete systematics: an unfinished synthesis. Nova Acta Leopold 1999; 312:47–82
    [Google Scholar]
  8. Goodfellow M et al. Family IV. Nocardiaceae (Castellani & Chalmers 1919) emend. Zhi, Li and Stackebrandt 2009. In Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology, the Actinobacteria, Part B 5, 2nd ed. New York: Springer; 2012 pp 376–496
    [Google Scholar]
  9. Brown-Elliott BA, Brown JM, Conville PS, Wallace RJ. Clinical and laboratory features of the Nocardia spp. based on current molecular taxonomy. Clin Microbiol Rev 2006; 19:259–282 [View Article][PubMed]
    [Google Scholar]
  10. Ezeoke I, Klenk H-P, Pötter G, Schumann P, Moser BD et al. Nocardia amikacinitolerans sp. nov., an amikacin-resistant human pathogen. Int J Syst Evol Microbiol 2013; 63:1056–1061 [View Article][PubMed]
    [Google Scholar]
  11. Wilson JW. Nocardiosis: updates and clinical overview. Mayo Clin Proc 2012; 87:403–407 [View Article][PubMed]
    [Google Scholar]
  12. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987; 65:501–509 [View Article]
    [Google Scholar]
  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  14. Kelly KL. Inter-Society Color Council - National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  15. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  16. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  17. Williams ST, Cross T. Chapter XI actinomycetes. Methods Microbiol 1971; 4:295–334
    [Google Scholar]
  18. CLSI Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes, Approved Standard M24-A Wayne, PA: Clinical and Laboratory Standards Institute; 2003
    [Google Scholar]
  19. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article][PubMed]
    [Google Scholar]
  20. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides . J Bacteriol 1982; 151:828–837 [View Article][PubMed]
    [Google Scholar]
  21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  22. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in Actinomycetes and Corynebacterial . J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  23. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  24. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  25. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  26. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–148
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  30. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  35. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  36. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS et al. SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 2012; 7:e48053 [View Article][PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  41. Takeda K, Kang Y, Yazawa K, Gonoi T, Mikami Y. Phylogenetic studies of Nocardia species based on gyrB gene analyses. J Med Microbiol 2010; 59:165–171 [View Article][PubMed]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  43. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  44. Li S, Ming H, Duan Y-Y, Huang J-R, Zhao Z-L et al. Nocardia tengchongensis sp. nov., isolated from a soil sample. Antonie van Leeuwenhoek 2017; 110:1149–1155 [View Article][PubMed]
    [Google Scholar]
  45. Zhao J, Han X, Hu H, Ling L, Zhang X et al. Nocardia stercoris sp. nov., a novel actinomycete isolated from the cow dung. Int J Syst Evol Microbiol 2020; 70:493–498 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004432
Loading
/content/journal/ijsem/10.1099/ijsem.0.004432
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error