1887

Abstract

A Gram-stain-positive, aerobic, catalase-positive, oxidase-negative, non-mycelium-forming, motile, rod-shaped with one polar flagellum actinobacterium, designated E918, was isolated from a desert soil collected in Cholistan desert, Pakistan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain E918 belonged to the genus and was most closely related to CGMCC 1.15091 (97.2 % similarity). The peptidoglycan was of the A3 type and the whole-cell sugar profile was found to contain galactose. The major menaquinone was MK-9(H). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two unidentified glycolipids. The major fatty acids identified were anteiso-C and anteiso-C. The G+C content of the genomic DNA was 68.69 mol%. The digital DNA–DNA hybridization and average nucleotide identity values between strain E918 and CGMCC 1.15091 were 28.0 and 83.4%, respectively. On the basis of its phylogenetic, phenotypic and chemotaxonomic features, strain E918 was considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain of is E918 (=JCM 33392=CGMCC 1.16978).

Funding
This study was supported by the:
  • Cheng-Hang Sun , National Natural Science Foundation of China , (Award NSFC 81621064)
  • Cheng-Hang Sun , CAMS Innovation Fund for Medical Sciences , (Award CAMS 2017-I2M-1-012)
  • Cheng-Hang Sun , CAMS Innovation Fund for Medical Sciences , (Award CAMS 2017-I2M-B&R-08)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004431
2020-09-04
2021-03-02
Loading full text...

Full text loading...

References

  1. Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium . J Bacteriol 1947; 54:291–303 [CrossRef][PubMed]
    [Google Scholar]
  2. Koch C, Schumann P, Stackebrandt E. Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter . Int J Syst Bacteriol 1995; 45:837–839 [CrossRef][PubMed]
    [Google Scholar]
  3. Parte AC. LPSN – list of prokaryotic names with standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [CrossRef]
    [Google Scholar]
  4. Margesin R, Schumann P, Spröer C, Gounot A-M. Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int J Syst Evol Microbiol 2004; 54:2067–2072 [CrossRef][PubMed]
    [Google Scholar]
  5. Liu Q, Xin Y-H, Chen X-L, Liu H-C, Zhou Y-G et al. Arthrobacter ruber sp. nov., isolated from glacier ice. Int J Syst Evol Microbiol 2018; 68:1616–1621 [CrossRef][PubMed]
    [Google Scholar]
  6. Kim KK, Lee KC, Oh H-M, Kim MJ, Eom MK et al. Arthrobacter defluvii sp. nov., 4-chlorophenol-degrading bacteria isolated from sewage. Int J Syst Evol Microbiol 2008; 58:1916–1921 [CrossRef]
    [Google Scholar]
  7. Arora PK, Jain RK. Arthrobacter nitrophenolicus sp. nov. a new 2-chloro-4-nitrophenol degrading bacterium isolated from contaminated soil. 3 Biotech 2013; 3:29–32 [CrossRef][PubMed]
    [Google Scholar]
  8. Hu Q-W, Chu X, Xiao M, Li C-T, Yan Z-F et al. Arthrobacter deserti sp. nov., isolated from a desert soil sample. Int J Syst Evol Microbiol 2016; 66:2035–2040 [CrossRef][PubMed]
    [Google Scholar]
  9. Yan R, Fu Y, Liu D, Jiang S, Ju H et al. Arthrobacter silvisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2018; 68:3892–3896 [CrossRef][PubMed]
    [Google Scholar]
  10. Lee SA, Kim JM, Cho H, Kim S-J, Ahn J-H et al. Arthrobacter silviterrae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:4546–4551 [CrossRef][PubMed]
    [Google Scholar]
  11. Zhang Q, Oh M, Kim J-H, Kanjanasuntree R, Konkit M et al. Arthrobacter paludis sp. nov., isolated from a marsh. Int J Syst Evol Microbiol 2018; 68:47–51 [CrossRef][PubMed]
    [Google Scholar]
  12. Cheng J, Zhang M-Y, Zhao J-C, Xu H, Zhang Y et al. Arthrobacter ginkgonis sp. nov., an actinomycete isolated from rhizosphere of Ginkgo biloba L. Int J Syst Evol Microbiol 2017; 67:319–324 [CrossRef]
    [Google Scholar]
  13. Krishnan R, Menon RR, Tanaka N, Busse H-J, Krishnamurthi S et al. Arthrobacter pokkalii sp nov, a Novel Plant Associated Actinobacterium with Plant Beneficial Properties, Isolated from Saline Tolerant Pokkali Rice, Kerala, India. PLoS One 2016; 11:e0150322 [CrossRef][PubMed]
    [Google Scholar]
  14. Lee J-Y, Hyun D-W, Soo Kim P, Sik Kim H, Shin N-R et al. Arthrobacter echini sp. nov., isolated from the gut of a purple sea urchin, Heliocidaris crassispina. Int J Syst Evol Microbiol 2016; 66:1887–1893 [CrossRef][PubMed]
    [Google Scholar]
  15. Keddie RM, Collins D, Jones D. Genus Arthrobacter Conn and Dimmick 1947, 300AL . In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’ s Manual of Systematic Bacteriology 1986 2 Baltimore: Williams & Wilkins; pp 1288–1301
    [Google Scholar]
  16. Busse HJ, Wieser M, Buczolits S. Genus III Arthrobacter Conn & Dimmick 1947, 301AL emend. Koch, Schumann & Stackebrandt 1995, 838. In Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Suzuki K. (editors) Bergey’ s Manual of Systematic Bacteriology 5, 2nd ed. New York: Springer; 2012 pp 578–624
    [Google Scholar]
  17. Wang H-F, Li L, Zhang Y-G, Hozzein WN, Zhou X-K et al. Arthrobacter endophyticus sp. nov., an endophytic actinobacterium isolated from root of Salsola affinis C. A. Mey. Int J Syst Evol Microbiol 2015; 65:2154–2160 [CrossRef][PubMed]
    [Google Scholar]
  18. Chen Y-G, Tang S-K, Zhang Y-Q, Li Z-Y, Yi L-B et al. Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie van Leeuwenhoek 2009; 96:63–70 [CrossRef][PubMed]
    [Google Scholar]
  19. Cheng J, Zhang M-Y, Zhao J-C, Xu H, Zhang Y et al. Arthrobacter ginkgonis sp. nov., an actinomycete isolated from rhizosphere of Ginkgo biloba L. Int J Syst Evol Microbiol 2017; 67:319–324 [CrossRef][PubMed]
    [Google Scholar]
  20. Kageyama A, Morisaki K, Omura S, Takahashi Y. Arthrobacter oryzae sp. nov. and Arthrobacter humicola sp. nov. Int J Syst Evol Microbiol 2008; 58:53–56 [CrossRef][PubMed]
    [Google Scholar]
  21. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [CrossRef]
    [Google Scholar]
  22. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  23. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci U S A 1992; 89:5685–5689 [CrossRef][PubMed]
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  27. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Molecular Biology and Evolution 1992; 9:945–967
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  29. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  30. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [CrossRef]
    [Google Scholar]
  31. Chen Y, Chen Y, Shi C, Huang Z, Zhang Y et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018; 7:1–6 [CrossRef]
    [Google Scholar]
  32. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:1–18 [CrossRef]
    [Google Scholar]
  33. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  35. Avram O, Rapoport D, Portugez S, Pupko T. M1CR0B1AL1Z3R-a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res 2019; 47:W88–W92 [CrossRef][PubMed]
    [Google Scholar]
  36. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011; 39:W29–W37 [CrossRef][PubMed]
    [Google Scholar]
  37. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014; 42:D490–D495 [CrossRef][PubMed]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  40. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 1975; 130:341–346 [CrossRef][PubMed]
    [Google Scholar]
  41. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color name Charts illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  42. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  43. Cappuccino JG, Sherman N. Microbiology: a Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  44. Kim S-J, Lim J-M, Hamada M, Ahn J-H, Weon H-Y et al. Marmoricola solisilvae sp. nov. and Marmoricola terrae sp. nov., isolated from soil and emended description of the genus Marmoricola . Int J Syst Evol Microbiol 2015; 65:1825–1830 [CrossRef][PubMed]
    [Google Scholar]
  45. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  46. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [CrossRef][PubMed]
    [Google Scholar]
  47. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria . J Gen Microbiol 1977; 100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  48. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [CrossRef][PubMed]
    [Google Scholar]
  49. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  50. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [CrossRef]
    [Google Scholar]
  51. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [CrossRef]
    [Google Scholar]
  52. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDIInc; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004431
Loading
/content/journal/ijsem/10.1099/ijsem.0.004431
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error