1887

Abstract

An actinobacterial strain, designated KUDC0627, was isolated from rhizospheric soil that contained on the Dokdo Islands, Republic of Korea. Cells were Gram-stain-positive, facultative anaerobic, non-motile and non-endospore-forming cocci. Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain KUDC0627 belongs to the genus and is most closely related to DSM 21800 (98.5 %), DSM 100019 (97.7 %) and Gsoil 633 (96.5 %). The average nucleotide identity scores and average amino acid identity values were all below the 95.0 % cut-off point. DNA–DNA hybridization, using the Genome-to-Genome Distance Calculator, estimated that there is 22.3 % DNA relatedness between KUDC0627 and DSM 21800. The genomic DNA G+C content was 66.9 mol%. The major menaquinone was MK-9(H) and the major diagnostic diamino acid in the cell-wall peptidoglycan was -diaminopimelic acid. The polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol, unidentified phospholipids, unidentified glycolipids and unidentified lipids. The major cellular fatty acids were iso-C, anteiso-C and iso-C. Based on phenotypic, chemotaxonomic, and phylogenetic data, strain KUDC0627 (=KCTC 39853=JCM 32702) represents a novel species, for which the name sp. nov. is proposed.

Funding
This study was supported by the:
  • Ministry of Education (KR) (Award 2016R1A05011910)
    • Principle Award Recipient: Sa-Youl Ghim
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004428
2020-09-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/10/5425.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004428&mimeType=html&fmt=ahah

References

  1. Nakamura K, Hiraishi A, Yoshimi Y, Kawaharasaki M, Masuda K et al. Microlunatus phosphovorus gen. nov., sp. nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 1995; 45:17–22 [View Article][PubMed]
    [Google Scholar]
  2. Cui Y-S, Im W-T, Yin C-R, Yang D-C, Lee S-T. Microlunatus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2007; 57:713–716 [View Article][PubMed]
    [Google Scholar]
  3. Wang Y-X, Cai M, Zhi X-Y, Zhang Y-Q, Tang S-K et al. Microlunatus aurantiacus sp. nov., a novel actinobacterium isolated from a rhizosphere soil sample. Int J Syst Evol Microbiol 2008; 58:1873–1877 [View Article][PubMed]
    [Google Scholar]
  4. DS A, WT I, Yoon MH. Microlunatus panaciterrae sp. nov., a beta-glucosidase-producing bacterium isolated from soil in a ginseng field. Int J Syst Microbiol 2008; 58:2734–2738
    [Google Scholar]
  5. Kämpfer P, Young C-C, Busse H-J, Chu J-N, Schumann P et al. Microlunatus soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010; 60:824–827 [View Article][PubMed]
    [Google Scholar]
  6. Kämpfer P, Schäfer J, Lodders N, Martin K. Microlunatus parietis sp. nov., isolated from an indoor wall. Int J Syst Evol Microbiol 2010; 60:2420–2423 [View Article][PubMed]
    [Google Scholar]
  7. Tuo L, Li J, Liu S-W, Liu Y, Hu L et al. Microlunatus endophyticus sp. nov., an endophytic actinobacterium isolated from bark of Bruguiera sexangula . Int J Syst Evol Microbiol 2016; 66:481–486 [View Article][PubMed]
    [Google Scholar]
  8. Zhang C-F, Ai M-J, Zhao L-L, Liu H-Y, Yu L-Y et al. Microlunatus nigridraconis sp. nov., an actinobacterium from rhizosphere soil. Int J Syst Evol Microbiol 2016; 66:3614–3618 [View Article][PubMed]
    [Google Scholar]
  9. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria . Front Microbiol 2018; 9:9 [View Article][PubMed]
    [Google Scholar]
  10. Yang L-L, Zhi X-Y. Reclassification of Friedmanniella endophytica, Lysinimicrobium sediminis and Lechevalieria rhizosphaerae as Microlunatus kandeliicorticis nom. nov., Demequina sediminis comb. nov. and Lentzea rhizosphaerae comb. nov., respectively. Int J Syst Evol Microbiol 2020; 70:3930–3931 [View Article][PubMed]
    [Google Scholar]
  11. Taehakkyo K. Cultural Heritage Administration of Korea Natural Heritage of Korea, Dokdo. In Park JH, Yang JY, Lee DH. (editors) Flora of Dokdo, 1st ed. Daegu: Kyungpook National University Press; 2009 pp 138–164
    [Google Scholar]
  12. Son J-S, Kang H-U, Ghim S-Y. Paenibacillus dongdonensis sp. nov., isolated from rhizospheric soil of Elymus tsukushiensis . Int J Syst Evol Microbiol 2014; 64:2865–2870 [View Article][PubMed]
    [Google Scholar]
  13. Son J-S, Sumayo M, Hwang Y-J, Kim B-S, Ghim S-Y. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Appl Soil Ecol 2014; 73:1–8 [View Article]
    [Google Scholar]
  14. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  15. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  17. Kluge AG, Farris JS. Quantitative Phyletics and the evolution of anurans. Syst Biol 1969; 18:1–32 [View Article]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  19. Felsenstein J. PHYLIP (Phylogeny inference package) version 3.696. http://evolution.genetics.washington.edu/phylip.html ; 2008
  20. Yoon JH, Lee ST, Park YH. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 1998; 48 Pt 1:187–194 [View Article][PubMed]
    [Google Scholar]
  21. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article][PubMed]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  23. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–W485 [View Article][PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  25. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  26. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1
    [Google Scholar]
  27. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article]
    [Google Scholar]
  28. Cowan ST, Steel KJ. Manual for the identification of medical bacteria university press; 1965
  29. Kawamoto I, Oka T, Nara T. Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. J Bacteriol 1981; 146:527–534 [View Article][PubMed]
    [Google Scholar]
  30. Schumann P. 5- peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  31. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  32. Shin YK, Lee J, Chun C, Kim H, Park Y. Notes: Isoprenoid Quinone Profiles of the Leclercia adecarboxylata KCTC 1036T. J Microbiol Biotechnol 1996; 6:68–69
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Kim S-J, Hamada M, Ahn J-H, Weon H-Y, Suzuki K-I et al. Friedmanniella aerolata sp. nov., isolated from air. Int J Syst Evol Microbiol 2016; 66:1970–1975 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004428
Loading
/content/journal/ijsem/10.1099/ijsem.0.004428
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error