1887

Abstract

A Gram-stain-positive, facultatively anaerobic, endospore-forming bacterium, designated strain TD8, was isolated from surface-sterilized rice seeds ( L.). Phylogenetic analysis of the 16S rRNA gene indicated that strain TD8 should be placed within the genus (95.2–99.0 % sequence similarity); it exhibited highest similarities to CGMCC 1.7727 (99.0 %), ‘’ CGMCC 1.12449 (98.9 %) and CGMCC 1.3642 (97.5 %). Chemotaxonomic analysis showed that menaquinone-7 (MK-7) was the major isoprenoid quinone. Diphosphatidylglycerol, phosphatidylglycerol and one unidentified phospholipid were the major cellular polar lipids, and the major fatty acids were anteiso-C, anteiso-C, iso-C, C and iso-C, which supported the allocation of the strain to the genus . The digital DNA–DNA hybridization value between strain TD8 and CGMCC 1.7727 was lower than 70 % (22.60 %), and the average nucleotide identity score was 79.54±5.09 %, suggesting that strain TD8 represented a novel species in the genus . The genomic DNA G+C content was 37.5 %. Based on physiological and biochemical characteristics and genotypic data, strain TD8 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TD8 (=ACCC 61556=CICC 24889=JCM 33537).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004427
2020-09-07
2021-10-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/10/5467.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004427&mimeType=html&fmt=ahah

References

  1. Wainø M, Tindall BJ, Schumann P, Ingvorsen K. Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 1999; 49 Pt 2:821–831 [View Article][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  3. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  4. Gao M, Liu Z-Z, Zhou Y-G, Liu H-C, Ma Y-C et al. Gracilibacillus kekensis sp. nov., a moderate halophile isolated from Keke salt lake. Int J Syst Evol Microbiol 2012; 62:1032–1036 [View Article][PubMed]
    [Google Scholar]
  5. Tang S-K, Wang Y, Lou K, Mao P-H, Jin X et al. Gracilibacillus saliphilus sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2009; 59:1620–1624 [View Article][PubMed]
    [Google Scholar]
  6. Jeon CO, Lim J-M, Jang HH, Park D-J, Xu L-H et al. Gracilibacillus lacisalsi sp. nov., a halophilic Gram-positive bacterium from a salt lake in China. Int J Syst Evol Microbiol 2008; 58:2282–2286 [View Article][PubMed]
    [Google Scholar]
  7. Carrasco IJ, Márquez MC, Yanfen X, Ma Y, Cowan DA et al. Gracilibacillus orientalis sp. nov., a novel moderately halophilic bacterium isolated from a salt lake in inner Mongolia, China. Int J Syst Evol Microbiol 2006; 56:599–604 [View Article][PubMed]
    [Google Scholar]
  8. Huo Y-Y, Xu X-W, Cui H-L, Wu M. Gracilibacillus ureilyticus sp. nov., a halotolerant bacterium from a saline-alkaline soil. Int J Syst Evol Microbiol 2010; 60:1383–1386 [View Article][PubMed]
    [Google Scholar]
  9. Kim P, Lee J-C, Park D-J, Shin K-S, Kim J-Y et al. Gracilibacillus bigeumensis sp. nov., a moderately halophilic bacterium from solar saltern soil. Int J Syst Evol Microbiol 2012; 62:1857–1863 [View Article][PubMed]
    [Google Scholar]
  10. Chen Y-G, Cui X-L, Zhang Y-Q, Li W-J, Wang Y-X et al. Gracilibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from saline soil. Int J Syst Evol Microbiol 2008; 58:2403–2408 [View Article][PubMed]
    [Google Scholar]
  11. Ahmed I, Yokota A, Fujiwara T. Gracilibacillus boraciitolerans sp. nov., a highly boron-tolerant and moderately halotolerant bacterium isolated from soil. Int J Syst Evol Microbiol 2007; 57:796–802 [View Article][PubMed]
    [Google Scholar]
  12. Chamroensaksri N, Tanasupawat S, Akaracharanya A, Visessanguan W, Kudo T et al. Gracilibacillus thailandensis sp. nov., from fermented fish (pla-ra). Int J Syst Evol Microbiol 2010; 60:944–948 [View Article][PubMed]
    [Google Scholar]
  13. Lawson PA, Deutch CE, Collins MD. Phylogenetic characterization of a novel salt-tolerant Bacillus species: description of Bacillus dipsosauri sp. nov. J Appl Bacteriol 1996; 81:109–112 [View Article][PubMed]
    [Google Scholar]
  14. Hirota K, Hanaoka Y, Nodasaka Y, Yumoto I. Gracilibacillus alcaliphilus sp. nov., a facultative alkaliphile isolated from indigo fermentation liquor for dyeing. Int J Syst Evol Microbiol 2014; 64:3174–3180 [View Article][PubMed]
    [Google Scholar]
  15. Diop A, Khelaifia S, Armstrong N, Labas N, Fournier P-E et al. Microbial culturomics unravels the halophilic microbiota repertoire of table salt: description of Gracilibacillus massiliensis sp. nov. Microb Ecol Health Dis 2016; 27:32049 [View Article][PubMed]
    [Google Scholar]
  16. Yang N, Ren B, Dai H, Liu Z, Zhou Y et al. Gracilibacillus xinjiangensis sp. nov., a new member of the genus Gracilibacillus isolated from Xinjiang region, China. Antonie van Leeuwenhoek 2013; 104:809–816 [View Article][PubMed]
    [Google Scholar]
  17. Liu Y, Liu L, Qiu F, Schumann P, Shi Y et al. Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 2010; 60:1266–1270 [View Article][PubMed]
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  21. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004; 431:980–984 [View Article][PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  23. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article][PubMed]
    [Google Scholar]
  24. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  27. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  29. Zhang L, Wang Y, Dai J, Tang Y, Yang Q et al. Bacillus korlensis sp. nov., a moderately halotolerant bacterium isolated from a sand soil sample in China. Int J Syst Evol Microbiol 2009; 59:1787–1792 [View Article][PubMed]
    [Google Scholar]
  30. Smibert R, Krieg N. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Collins MD. 11 analysis of isoprenoid quinones. Methods Microbiol 1985; 18:329–366
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004427
Loading
/content/journal/ijsem/10.1099/ijsem.0.004427
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error