Revealing the hidden diversity of marine fungi in Portugal with the description of two novel species, sp. nov. and sp. nov. Free

Abstract

Fungi are ubiquitous organisms with a wide distribution in almost all ecosystems, including marine environments. Coastal and estuarine ecosystems remain poorly unexplored as fungal habitats, potentially harbouring a hidden diversity with important ecological roles. During an extensive survey of marine fungi in coastal and estuarine Portuguese environments, a collection of 612 isolates was obtained from water, algae, sponges and driftwood. From these, 282 representative isolates were selected through microsatellite-primed PCR (MSP-PCR) fingerprinting analysis, which were identified based on DNA sequence data. The collection yielded 117 taxa from 38 distinct genera, which were identified using DNA sequence analysis. Overall, fungal community composition varied with host/substrate, but the most abundant taxa in the collection were , , and / complex. The occurrence of a high fungal diversity harbouring novel species was disclosed. Through a multilocus phylogeny based on ITS, and sequences, in conjunction with morphological and physiological data, we propose sp. nov. and sp. nov.

Funding
This study was supported by the:
  • Fundação para a Ciência e a Tecnologia (Award CEECINST/00137/2018)
    • Principle Award Recipient: Ana C. Esteves
  • Fundação para a Ciência e a Tecnologia (Award SFRH/BD/129020/2017)
    • Principle Award Recipient: Micael F.M. Gonçalves
  • Fundação para a Ciência e a Tecnologia (Award UIDB/50017/2020+UIDP/50017/2020)
    • Principle Award Recipient: Not Applicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004410
2020-08-26
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/10/5337.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004410&mimeType=html&fmt=ahah

References

  1. Garzoli L, Poli A, Prigione V, Gnavi G, Varese GC. Peacock's tail with a fungal cocktail: first assessment of the mycobiota associated with the brown alga Padina pavonica . Fungal Ecol 2018; 35:87–97 [View Article]
    [Google Scholar]
  2. Jones EBG, Pang K-L, Abdel-Wahab MA, Scholz B, Hyde KD et al. An online resource for marine fungi. Fungal Divers 2019; 96:347–433 [View Article]
    [Google Scholar]
  3. Johnson TW, Sparrow FK. Fungi in Oceans and Estuaries Weinheim, Germany: J. Cramer; 1961 p 685
    [Google Scholar]
  4. Tubaki K. Studies on the Japanese marine fungi, lignicolous group (III), algicolous group and a general consideration. Annual Report of the Institute for Fermentation Osaka 1969; 4:12–42
    [Google Scholar]
  5. Kohlmeyer J, Kohlmeyer E. Marine Mycology: The Higher Fungi London: Academic Press; 1979 p 704
    [Google Scholar]
  6. Jensen PR, Fenical W. Secondary metabolites from marine fungi. Fungal Diver Res Ser 2002; 7:293–315
    [Google Scholar]
  7. Pang K-L, Overy DP, Jones EBG, Calado M, Burgaud G et al. ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: toward a new consensual definition. Fungal Biol Rev 2016; 30:163–175 [View Article]
    [Google Scholar]
  8. Jones EBG. Are there more marine fungi to be described?. Bot Mar 2011; 54:343–354 [View Article]
    [Google Scholar]
  9. Jones EBG, Pang K-L. Tropical aquatic fungi. Biodivers Conserv 2012; 21:2403–2423 [View Article]
    [Google Scholar]
  10. Kis-Papo T. Marine fungal communities. In: Dighton J, Wjits JF, Oudemans P (eds). The fungal community, its organisation and role in the ecosystem, 3rd edn. Boca Baton: CRC Press; 2005 pp 61–92
    [Google Scholar]
  11. Richards TA, Jones MDM, Leonard G, Bass D. Marine fungi: their ecology and molecular diversity. Ann Rev Mar Sci 2012; 4:495–522 [View Article][PubMed]
    [Google Scholar]
  12. Raghukumar S. Fungi in coastal and oceanic marine ecosystems New York: Springer; 2017
    [Google Scholar]
  13. Hyde KD. Frequency of occurrence of lignicolous marine fungi in the tropics. In: Moss ST (ed). The biology of marine fungi Cambridge: Cambridge Univ Press; 1986 pp 311–322
    [Google Scholar]
  14. Hyde KD, Jones EBG. Marine mangrove fungi. Mar Ecol 1988; 9:15–33 [View Article]
    [Google Scholar]
  15. Schmit JP, Shearer CA. A checklist of mangrove associated fungi. Mycotaxon 2003; 80:423–477
    [Google Scholar]
  16. Burgaud G, Hué NTM, Arzur D, Coton M, Perrier-Cornet J-M et al. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents. Res Microbiol 2015; 166:700–709 [View Article][PubMed]
    [Google Scholar]
  17. Damare S, Raghukumar C. Fungi and macroaggregation in deep-sea sediments. Microb Ecol 2008; 56:168–177 [View Article][PubMed]
    [Google Scholar]
  18. Rédou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G. Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 2015; 81:3571–3583 [View Article][PubMed]
    [Google Scholar]
  19. Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M. Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 2011; 13:2359–2370 [View Article][PubMed]
    [Google Scholar]
  20. Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H et al. Fungal diversity in deep-sea sediments – the presence of novel fungal groups. Fungal Ecol 2010; 3:316–325 [View Article]
    [Google Scholar]
  21. Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 2009; 11:1588–1600 [View Article][PubMed]
    [Google Scholar]
  22. Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P. Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 2009; 75:6415–6421 [View Article][PubMed]
    [Google Scholar]
  23. Xu W, Guo S, Pang K-L, Luo Z-H. Fungi associated with chimney and sulfide samples from a South Mid-Atlantic Ridge hydrothermal site: distribution, diversity and abundance. Deep Sea Research Part I 2017; 123:48–55 [View Article]
    [Google Scholar]
  24. Jebaraj CS, Forster D, Kauff F, Stoeck T. Molecular diversity of fungi from marine oxygen-deficient environments (odes). Prog Mol Subcell Biol 2012; 53:e208189 [View Article][PubMed]
    [Google Scholar]
  25. Wang Y, Zhang WP, Cao HL, Shek CS, Tian RM et al. Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the red sea. Front Microbiol 2014; 5:37 [View Article][PubMed]
    [Google Scholar]
  26. Richards TA, Leonard G, Mahé F, Del Campo J, Romac S et al. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc Biol Sci 2015; 282:2015–2243 [View Article][PubMed]
    [Google Scholar]
  27. Stern RF, Picard KT, Hamilton KM, Walne A, Tarran GA et al. Novel lineage patterns from an automated water sampler to probe marine microbial biodiversity with ships of opportunity. Prog Oceanogr 2015; 137:409e420409–420 [View Article]
    [Google Scholar]
  28. Jeffries TC, Curlevski NJ, Brown MV, Harrison DP, Doblin MA et al. Partitioning of fungal assemblages across different marine habitats. Environ Microbiol Rep 2016; 8:e238235 [View Article][PubMed]
    [Google Scholar]
  29. Picard KT. Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol 2017; 25:1–13 [View Article]
    [Google Scholar]
  30. Garzoli L, Gnavi G, Varese GC, Picco AM. Mycobiota associated with the rhodophyte alien species Asparagopsis taxiformis (Delile) Trevisan de Saint-Léon in the Mediterranean Sea. Mar Ecol 2015; 36:e968959–968 [View Article]
    [Google Scholar]
  31. Gnavi G, Garzoli L, Poli A, Prigione V, Burgaud G et al. The culturable mycobiota of Flabellia petiolata: first survey of marine fungi associated to a Mediterranean green alga. PLoS One 2017; 12:e0175941 [View Article][PubMed]
    [Google Scholar]
  32. Vohník M, Borovec O, Kolaříková Z, Sudová R, Réblová M. Extensive sampling and high-throughput sequencing reveal Posidoniomycesatricolor gen. et sp. nov. (Aigialaceae, Pleosporales) as the dominant root mycobiont of the dominant Mediterranean seagrass Posidoniaoceanica . MycoKeys 2019; 55:59 [View Article][PubMed]
    [Google Scholar]
  33. Azevedo E, Caeiro MF, Rebelo R, Barata M. Biodiversity and characterization of marine mycota from Portuguese waters. Anim Biodivers Conserv 2011; 34:205–215
    [Google Scholar]
  34. Garzoli L, Gnavi G, Tamma F, Tosi S, Varese GC et al. Sink or swim: updated knowledge on marine fungi associated with wood substrates in the Mediterranean sea and hints about their potential to remediate hydrocarbons. Prog Oceanogr 2015; 137:140–148 [View Article]
    [Google Scholar]
  35. Höller U, Wright AD, Matthee GF, Konig GM, Draeger S et al. Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 2000; 104:1354–1365 [View Article]
    [Google Scholar]
  36. Godinho VM, de Paula MTR, Silva DAS, Paresque K, Martins AP et al. Diversity and distribution of hidden cultivable fungi associated with marine animals of antarctica. Fungal Biol 2019; 123:507–516 [View Article][PubMed]
    [Google Scholar]
  37. Möller EM, Bahnweg G, Sandermann H, Geiger HH. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 1992; 20:6115–6116 [View Article][PubMed]
    [Google Scholar]
  38. Alves A, Phillips AJL, Henriques I, Correia A. Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting. Res Microbiol 2007; 158:112–121 [View Article][PubMed]
    [Google Scholar]
  39. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal genes for phylogenies. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds). PCR Protocols: A guide to methods and applications California: Academic Press; 1990 pp 315–322
    [Google Scholar]
  40. Alves A, Correia A, Luque J, Phillips A. Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila . Mycologia 2004; 96:598–613 [View Article][PubMed]
    [Google Scholar]
  41. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995; 61:1323–1330 [View Article][PubMed]
    [Google Scholar]
  42. O'Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 1997; 7:103–116 [View Article][PubMed]
    [Google Scholar]
  43. Alves A, Crous PW, Correia A, Phillips AJL. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae . Fungal Divers 2008; 28:1–13
    [Google Scholar]
  44. Rehner SA. Primers for elongation factor 1-α (EF1-α). 2001. http://www.nacse.org/yfaaberg/aftol/EF1primer.pdf .
  45. Lopes A, Phillips AJL, Alves A. Mating type genes in the genus Neofusicoccum: mating strategies and usefulness in species delimitation. Fungal Biol 2017; 121:394–404 [View Article][PubMed]
    [Google Scholar]
  46. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  47. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Sym Ser 1999; 41:95–98
    [Google Scholar]
  48. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  49. Swofford DL. PAUP*: Phylogenetic analysis using parsimony (* and other methods). Version 4.0. Sinauer Associates, Sunderland, Massachusetts,; 2000
  50. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19:1572–1574 [View Article][PubMed]
    [Google Scholar]
  51. Page RD. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996; 12:357–358 [View Article][PubMed]
    [Google Scholar]
  52. Rayner RW. A Mycological Color Chart Kew: Commonwealth Mycological Institute; 1970
    [Google Scholar]
  53. Gonçalves MFM, Santos L, Silva BMV, Abreu AC, Vicente TFL et al. Biodiversity of Penicillium species from marine environments in Portugal and description of Penicillium lusitanum sp. nov., a novel species isolated from sea water. Int J Syst Evol Microbiol 2019; 69:3014–3021 [View Article][PubMed]
    [Google Scholar]
  54. Gladfelter AS, James TY, Amend AS. Marine fungi. Curr Biol 2019; 29:R191–R195 [View Article][PubMed]
    [Google Scholar]
  55. Grossart H-P, Van den Wyngaert S, Kagami M, Wurzbacher C, Cunliffe M et al. Fungi in aquatic ecosystems. Nat Rev Microbiol 2019; 17:339–354 [View Article][PubMed]
    [Google Scholar]
  56. Taylor JD, Cunliffe M. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 2016; 10:2118–2128 [View Article][PubMed]
    [Google Scholar]
  57. Jones EBG, Sakayaroj J, Suetrong S, Somirithipol S, Pang K-L. Classification of marine Ascomycota, anamorfic taxa and Basidiomycota. Fungal Diver 2009; 35:1–203
    [Google Scholar]
  58. Comeau AM, Vincent WF, Bernier L, Lovejoy C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci Rep 2016; 6:30120 [View Article][PubMed]
    [Google Scholar]
  59. Hassett BT, Gradinger R. Chytrids dominate Arctic marine fungal communities. Environ Microbiol 2016; 18:2001–2009 [View Article][PubMed]
    [Google Scholar]
  60. Hassett BT, Ducluzeau A-LL, Collins RE, Gradinger R. Spatial distribution of aquatic marine fungi across the Western Arctic and sub-arctic. Environ Microbiol 2017; 19:475–484 [View Article][PubMed]
    [Google Scholar]
  61. Amend A, Burgaud G, Cunliffe M, Edgcomb VP, Ettinger CL et al. Fungi in the marine environment: open questions and unsolved problems. mBio 2019; 10:e01189–18 [View Article][PubMed]
    [Google Scholar]
  62. Kagami M, Miki T, Takimoto G. Mycoloop: chytrids in aquatic food webs. Front Microbiol 2014; 5:166 [View Article][PubMed]
    [Google Scholar]
  63. Kohlmeyer J, Spatafora JW, Volkmann-Kohlmeyer B. Lulworthiales, a new order of marine Ascomycota. Mycologia 2000; 92:453–458 [View Article]
    [Google Scholar]
  64. Azevedo E, Barata M, Marques MI, Caeiro MF. Lulworthia atlantica: a new species supported by molecular phylogeny and morphological analysis. Mycologia 2017; 109:287–295 [View Article][PubMed]
    [Google Scholar]
  65. Calado MdaL, Carvalho L, Pang K-L, Barata M. Diversity and ecological characterization of sporulating higher filamentous marine fungi associated with Spartina maritima (Curtis) Fernald in two Portuguese salt marshes. Microb Ecol 2015; 70:612–633 [View Article][PubMed]
    [Google Scholar]
  66. Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T et al. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 2015; 73:1–72 [View Article]
    [Google Scholar]
  67. Liu Y, Singh P, Liang Y, Li J, Xie N et al. Abundance and molecular diversity of thraustochytrids in coastal waters of southern China. FEMS Microbiol Ecol 2017; 93:89 [View Article][PubMed]
    [Google Scholar]
  68. Liu J-K, Hyde KD, Jeewon R, Phillips AJL, Maharachchikumbura SSN et al. Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Divers 2017; 84:75–99 [View Article]
    [Google Scholar]
  69. Vijaykrishna D, Jeewon R, Hyde KD. Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Divers 2006; 23:351–390
    [Google Scholar]
  70. Gonçalves MFM, Vicente TFL, Esteves AC, Alves A. Neptunomyces aureus gen. et sp. nov. (Didymosphaeriaceae, Pleosporales) isolated from algae in Ria de Aveiro, Portugal. MycoKeys 2019; 60:31–44 [View Article][PubMed]
    [Google Scholar]
  71. Gonçalves MFM, Aleixo A, Vicente TFL, Esteves AC, Alves A. Three new species of Neocamarosporium isolated from saline environments: N. aestuarinum sp. nov., N. endophyticum sp. nov. and N. halimiones sp. nov. Mycosphere 2019; 10:608–621 [View Article]
    [Google Scholar]
  72. Gonçalves MFM, Silva BMV, Esteves AC, Alves A. Verrucoconiothyrium ambiguum sp. nov., a novel species isolated from sea water, and affiliation of the genus Verrucoconiothyrium to the family Didymellaceae . Int J Syst Evol Microbiol 2019; 69:3769–3776 [View Article][PubMed]
    [Google Scholar]
  73. Eriksson O. On graminicolous pyrenomycetes from Fennoscandia I. Dictyosporous species (339-380). II. Phragmosporous and scolecosporous species (381-440). III. Amerosporous and didymosporous species (441-466). Arkiv før Botanik 1967; 6:339–466
    [Google Scholar]
  74. Gonçalves MFM, Vicente TFL, Esteves AC, Alves A. Novel halotolerant species of Emericellopsis and Parasarocladium associated with macroalgae in an estuarine environment. Mycologia 2020; 112:154–171 [View Article][PubMed]
    [Google Scholar]
  75. Crous PW, Wingfield MJ, Lombard L, Roets F, Swart WJ et al. Fungal planet description sheets: 951-1041. Persoonia 2019; 43:223–425 [View Article][PubMed]
    [Google Scholar]
  76. Verkley GJM, Dukik K, Renfurm R, Göker M, Stielow JB. Novel genera and species of coniothyrium-like fungi in Montagnulaceae (Ascomycota). Persoonia 2014; 32:25–51 [View Article][PubMed]
    [Google Scholar]
  77. Liu JK, Hyde KD, Jones EBG, Ariyawansa HA, Bhat DJ et al. Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Divers 2015; 72:1–197 [View Article]
    [Google Scholar]
  78. Verkley GJM, da Silva M, Wicklow DT, Crous PW. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud Mycol 2004; 50:323–335
    [Google Scholar]
  79. Valenzuela-Lopez N, Sutton DA, Cano-Lira JF, Paredes K, Wiederhold N et al. Coelomycetous fungi in the clinical setting: morphological convergence and cryptic diversity. J Clin Microbiol 2017; 55:552–567 [View Article][PubMed]
    [Google Scholar]
  80. Wanasinghe DN, Phukhamsakda C, Hyde KD, Jeewon R, Lee HB et al. Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae . Fungal Divers 2018; 89:1–236 [View Article]
    [Google Scholar]
  81. Chen Q, Hou LW, Duan WJ, Crous PW, Cai L. Didymellaceae revisited. Stud Mycol 2017; 87:105–159 [View Article][PubMed]
    [Google Scholar]
  82. Osterhage C, Kaminsky R, König GM, Wright AD. Ascosalipyrrolidinone a, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae . J Org Chem 2000; 65:6412–6417 [View Article][PubMed]
    [Google Scholar]
  83. Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW. Resolving the Phoma enigma. Stud Mycol 2015; 82:137–217 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004410
Loading
/content/journal/ijsem/10.1099/ijsem.0.004410
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed