1887

Abstract

On the basis of two other publications (Yarza 2013; Nemec 2019) and on the basis of resequencing of the 16S rRNA gene of CIP 103579 it is concluded that CIP 103579, which is the only available strain of the species from culture collections, does not conform to the original description given by Pot (1992). The strain investigated is a member of the genus within the , a family of the and not a member of the as originally proposed. CIP 103579 shared 99.8 % 16S rRNA gene sequence similarity with DSM 2403. The two strains clustered together by and core genome-based phylogenetic analyses and shared an average nucleotide identity of 96.47% (reciprocal, 96.56 %) and a digital genome distance calculation (GGDC) value of 66.9 %. Furthermore, the two strains shared matrix-assisted laser desorption/ionization time of flight MS profiles to a high extent and showed highly similar cellular fatty acid profiles and physiological substrate utilization patterns. It is proposed that the Judicial commission consider (1) that the strain currently deposited as CIP 103579 be recognized as a member of ; (2) placing (Pot 1992) on the list of rejected names if a suitable replacement strain, or a neotype strain cannot be found within 2 years of publication of this request; and (3) place the genus name (Pot 1992) on the list of rejected names [Recommendation 20D (3) of the Code].

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004404
2020-08-26
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/9/5165.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004404&mimeType=html&fmt=ahah

References

  1. Pot B, Willems A, Gillis M, De Ley J. Intra- and intergeneric relationships of the genus Aquaspirillum: Prolinoborus, a new genus for Aquaspirillum fasciculus, with the species Prolinoborus fasciculus comb. nov. Int J Syst Bacteriol 1992; 42:44–57 [View Article]
    [Google Scholar]
  2. Yarza P, Spröer C, Swiderski J, Mrotzek N, Spring S et al. Sequencing orphan species initiative (SOS): filling the gaps in the 16S rRNA gene sequence database for all species with validly published names. Syst Appl Microbiol 2013; 36:69–73 [View Article][PubMed]
    [Google Scholar]
  3. Audureau A. Étude Du genre Moraxella. Ann Inst Pasteur (Paris) 1940; 64:126–166
    [Google Scholar]
  4. Brisou J, Prévot AR. Études de systématique bactérienne. X. Révision des espèces réunies dans le genre Achromobacter . Annales De L Institut Pasteur 1954; 86:722–728
    [Google Scholar]
  5. Bouvet PJM, Grimont PAD. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii . Int J Syst Bacteriol 1986; 36:228–240 [View Article]
    [Google Scholar]
  6. Nemec A, Radolfová-Křížová L, Maixnerová M, Nemec M, Clermont D et al. Revising the taxonomy of the Acinetobacter lwoffii group: The description of Acinetobacter pseudolwoffii sp. nov. and emended description of Acinetobacter lwoffii . Syst Appl Microbiol 2019; 42:159–167 [View Article][PubMed]
    [Google Scholar]
  7. Schauss T, Busse H-J, Golke J, Kämpfer P, Glaeser SP. Empedobacter stercoris sp. nov., isolated from an input sample of a biogas plant. Int J Syst Evol Microbiol 2015; 65:3746–3753 [View Article][PubMed]
    [Google Scholar]
  8. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  9. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 1978; 75:4801–4805 [View Article][PubMed]
    [Google Scholar]
  10. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  11. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  12. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 1992; 9:678–687 [View Article][PubMed]
    [Google Scholar]
  13. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  14. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44:W22–W28 [View Article][PubMed]
    [Google Scholar]
  15. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  16. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  17. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  18. Glaeser SP, Galatis H, Martin K, Kämpfer P. Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana . Int J Syst Evol Microbiol 2013; 63:3487–3493 [View Article][PubMed]
    [Google Scholar]
  19. Eisenberg T, Riße K, Schauerte N, Geiger C, Blom J et al. Isolation of a novel ‘atypical’ Brucella strain from a bluespotted ribbontail ray (Taeniura lymma). Antonie van Leeuwenhoek 2017; 110:221–234 [View Article]
    [Google Scholar]
  20. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  21. Kämpfer P. Grouping of Acinetobacter genomic species by cellular fatty acid composition. Med Microbiol Lett 1993; 2:394–400
    [Google Scholar]
  22. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article][PubMed]
    [Google Scholar]
  23. Parker CT, Tindall BJ, Garrity GM. International code of nomenclature of prokaryotes. Int J Syst Evol Microbiol 2019; 69:S1 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004404
Loading
/content/journal/ijsem/10.1099/ijsem.0.004404
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error