1887

Abstract

The taxonomic positions of two novel aerobic, Gram-positive actinobacteria, designated strains RB29 and RB68, were determined using a polyphasic approach. Based on 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of RB29 were identified as DSM 102126 (99.2 % similarity) and DSM 43919 (98.7 %), and for strain RB68 was DSM 44148 (98.3 %). Digital DNA–DNA hybridization (dDDH) between RB29 and its closest phylogenetic neighbours, DSM 102126 and DSM 43919, resulted in similarity values of 53.2 % (50.6–55.9 %) and 26.4 % (24.1–28.9 %), respectively. Additionally, the average nucleotide identity (ANI) was 93.2 % (94.0 %) for DSM 102126 and 82.3 % (78.9 %) for DSM 43919. dDDH analysis between strain RB68 and DSM 44148 gave a similarity value of 24.5 % (22.2–27.0 %). Both strains, RB29 and RB68, revealed morphological characteristics and chemotaxonomic features typical for the genus , such as the presence of -diaminopimelic acid in the cell wall, galactose and glucose as major sugar components within whole-cell hydrolysates and the absence of mycolic acids. The major phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. Predominant menaquinones were MK-9(H) and MK-9(H) for RB29 and MK-9(H) and MK-9(H) for RB68. The main fatty acids were identified as 10-methyloctadecanoic acid (10-methyl C), 14-methylpentadecanoic acid (iso-C), hexadecanoic acid (C) and -9-octadecanoic acid (Cω9). Here, we propose two novel species of the genus : sp. nov. with the type strain RB29 (=CCUG 72668=NRRL B-65537) and sp. nov. with the type strain RB68 (=CCUG 72669=NRRL B-65538).

Funding
This study was supported by the:
  • Christine Beemelmanns , Daimler und Benz Stiftung , (Award Beemelmanns)
  • René Benndorf , Boehringer Ingelheim Stiftung , (Award Travel Award)
  • Christine Beemelmanns , Deutsche Forschungsgemeinschaft , (Award CRC 1127, BE-4799/3-1)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004403
2020-08-26
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/10.1099/ijsem.0.004403/ijsem004403.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004403&mimeType=html&fmt=ahah

References

  1. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [CrossRef]
    [Google Scholar]
  2. Kroppenstedt RM, Goodfellow M. The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillospora and Thermomonospora. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes USA: Springer-Verlag; 2006 pp 682–724
    [Google Scholar]
  3. Zhang Z, Kudo T, Nakajima Y, Wang Y. Clarification of the relationship between the members of the family Thermomonosporaceae on the basis of 16S rDNA, 16S-23S rRNA internal transcribed spacer and 23S rDNA sequences and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:373–383 [CrossRef][PubMed]
    [Google Scholar]
  4. Tamura T, Ishida Y, Nozawa Y, Otoguro M, Suzuki K-ichiro. Transfer of Actinomadura spadix Nonomura and Ohara 1971 to Actinoallomurus spadix gen. nov., comb. nov., and description of Actinoallomurus amamiensis sp. nov., Actinoallomurus caesius sp. nov., Actinoallomurus coprocola sp. nov., Actinoallomurus fulvus sp. nov., Actinoallomurus iriomotensis sp. nov., Actinoallomurus luridus sp. nov., Actinoallomurus purpureus sp. nov. and Actinoallomurus yoronensis sp. nov. Int J Syst Evol Microbiol 2009; 59:1867–1874 [CrossRef][PubMed]
    [Google Scholar]
  5. Zucchi TD, Kim B-Y, Bonda ANV, Goodfellow M. Actinomadura xylanilytica sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 2013; 63:576–580 [CrossRef][PubMed]
    [Google Scholar]
  6. Songsumanus A, Kudo T, Ohkuma M, Phongsopitanun W, Tanasupawat S. Actinomadura montaniterrae sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2016; 66:3310–3316 [CrossRef][PubMed]
    [Google Scholar]
  7. Miyadoh S, Amano S, Tohyama H, Shomura T. Actinomadura atramentaria, a new species of the Actinomycetales. Int J Syst Bacteriol 1987; 37:342–346 [CrossRef]
    [Google Scholar]
  8. Wink J, Kroppenstedt RM, Seibert G, Stackebrandt E. Actinomadura namibiensis sp. nov. Int J Syst Evol Microbiol 2003; 53:721–724 [CrossRef][PubMed]
    [Google Scholar]
  9. He J, Xu Y, Sahu MK, Tian X-P, Nie G-X et al. Actinomadura sediminis sp. nov., a marine actinomycete isolated from mangrove sediment. Int J Syst Evol Microbiol 2012; 62:1110–1116 [CrossRef][PubMed]
    [Google Scholar]
  10. Qin S, Zhao G-Z, Li J, Zhu W-Y, Xu L-H et al. Actinomadura flavalba sp. nov., an endophytic actinomycete isolated from leaves of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 2009; 59:2453–2457 [CrossRef][PubMed]
    [Google Scholar]
  11. Rachniyom H, Matsumoto A, Indananda C, Duangmal K, Takahashi Y et al. Actinomadura syzygii sp. nov., an endophytic actinomycete isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels). Int J Syst Evol Microbiol 2015; 65:1946–1949 [CrossRef][PubMed]
    [Google Scholar]
  12. Promnuan Y, Kudo T, Ohkuma M, Chantawannakul P. Actinomadura apis sp. nov., isolated from a honey bee (Apis mellifera) hive, and the reclassification of Actinomadura cremea subsp. rifamycini Gauze et al. 1987 as Actinomadura rifamycini (Gauze et al. 1987) sp. nov., comb. nov. Int J Syst Evol Microbiol 2011; 61:2271–2277 [CrossRef][PubMed]
    [Google Scholar]
  13. Nakamura G, Isono K. A new species of Actinomadura producing a polyether antibiotic, cationomycin. J Antibiot 1983; 36:1468–1472 [CrossRef][PubMed]
    [Google Scholar]
  14. Oki T, Konishi M, Tomatsu K, Tomita K, Saitoh K et al. Pradimicin, a novel class of potent antifungal antibiotics. J Antibiot 1988; 41:1701–1704 [CrossRef][PubMed]
    [Google Scholar]
  15. Igarashi Y, Iida T, Oku N, Watanabe H, Furihata K et al. Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J Antibiot 2012; 65:355–359 [CrossRef][PubMed]
    [Google Scholar]
  16. Kornsakulkarn J, Saepua S, Boonruangprapa T, Suphothina S, Thongpanchang C. New β-carboline and indole alkaloids from actinomycete Actinomadura sp. bcc 24717. Phytochem Lett 2013; 6:491–494 [CrossRef]
    [Google Scholar]
  17. Benndorf R, Guo H, Sommerwerk E, Weigel C, Garcia-Altares M et al. Natural products from actinobacteria associated with fungus-growing termites. Antibiotics 2018; 7:E83 [CrossRef][PubMed]
    [Google Scholar]
  18. Visser AA, Nobre T, Currie CR, Aanen DK, Poulsen M. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites. Microb Ecol 2012; 63:975–985 [CrossRef][PubMed]
    [Google Scholar]
  19. Hsu SC, Lockwood JL. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 1975; 29:422–426 [CrossRef][PubMed]
    [Google Scholar]
  20. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [CrossRef]
    [Google Scholar]
  21. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: sequence visualization and annotation. Bioinformatics 2000; 16:944–945 [CrossRef][PubMed]
    [Google Scholar]
  22. Parte AC. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013b; 195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  24. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  28. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  30. Guo H, Benndorf R, Leichnitz D, Klassen JL, Vollmers J et al. Isolation, biosynthesis and chemical modifications of Rubterolones A-F: rare tropolone alkaloids from Actinomadura sp. 5-2. Chem Eur J 2017; 23:9338–9345 [CrossRef][PubMed]
    [Google Scholar]
  31. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [CrossRef][PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [CrossRef][PubMed]
    [Google Scholar]
  34. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  36. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [CrossRef][PubMed]
    [Google Scholar]
  38. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  39. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [CrossRef]
    [Google Scholar]
  40. Schumann P. Peptidoglycan structure. In Rainey F, Oren A. (editors) Taxonomy of Prokaryotes, Methods in Microbiology 38 London: Academic Press; pp 101–129
    [Google Scholar]
  41. Minnikin DE, Alshamaony L, Goodfellow M. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 1975; 88:200–204 [CrossRef][PubMed]
    [Google Scholar]
  42. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  43. Wink J, Schumann P, Atasayar E, Klenk H-P, Zaburannyi N et al. Streptomyces caelicus’, an antibiotic-producing species of the genus Streptomyces, and Streptomyces canchipurensis Li et al. 2015 are later heterotypic synonyms of Streptomyces muensis Ningthoujam et al. 2014. Int J Syst Evol Microbiol 2017; 67:548–556 [CrossRef]
    [Google Scholar]
  44. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [CrossRef]
    [Google Scholar]
  45. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [CrossRef]
    [Google Scholar]
  46. Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures GmbH. Available from: https://www.dsmz.de/services/services-microorganisms/identification/analysis-of-cellular-fatty-acids.html.
  47. Groth I, Schumann P, Rajney FA, Martin K, Schuetze B et al. Bogoriella caseilytica gen. nov., sp. nov., a new alkaliphilic actinomycete from a soda lake in Africa. Int J Syst Bacteriol 1997; 47:788–794 [CrossRef][PubMed]
    [Google Scholar]
  48. Suter MA. Isolierung und Charakterisierung von Melanin-negativen Mutanten aus Streptomyces glaucescens. ETH Zürich Doktorarbeit 1978
    [Google Scholar]
  49. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  50. Guo H, Benndorf R, König S, Leichnitz D, Weigel C et al. Expanding the Rubterolone family: intrinsic reactivity and directed diversification of PKS-derived pyrans. Chem Eur J 2018; 24:11319–11324 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004403
Loading
/content/journal/ijsem/10.1099/ijsem.0.004403
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error