sp. nov. and sp. nov., isolated from natural salt marsh sediment on the Tibetan Plateau Free

Abstract

Two novel Gram-stain-negative, aerobic and non-motile rods bacteria, designated TQ8S and ZH2S, were isolated from salt marsh sediment collected from the Tibetan Plateau. Strain TQ8S was found to grow at 10–40 °C (optimum, 30 °C), pH 6.0–11.0 (optimum, pH 8.0–9.0) and in the presence of 2–12 % (w/v) NaCl (optimum, 6–8 %). Strain ZH2S was found to grow at 15–40 °C (optimum, 30 °C), pH 7.0–10.0 (optimum pH 9.0) and in the presence of 2–10 % (w/v) NaCl (optimum, 4–6 %). Phylogenetic analysis based on the 16S rRNA gene sequences showed that strains TQ8S and ZH2S shared 99.07 % sequence similarity between each other and were affiliated with the genus , sharing 97.48 % and 97.41 % of sequence similarity to their closest neighbour Esulfide1, respectively. DNA–DNA hybridization analyses showed 61.0 % relatedness between strains TQ8S and ZH2S. The average nucleotide identity and the average amino acid identity values between the two genomes were 92.33 and 92.84 %, respectively. The values between the two strains and their close phylogenetic relatives were all below 95 %. The major respiratory quinones of strain TQ8S were Q-9 and Q-8, while that of ZH2S was Q-9. The main fatty acids shared by the two strains were C 6c and/or C 7c, C 6c and/or C 7c, C and C 3-OH. Strain ZH2S can be distinguished from TQ8S by a higher proportion of C cyclo 8. The G+C content of the genomic DNA of strains TQ8S and ZH2S were 57.20 and 57.14 mol%, respectively. On the basis of phenotypic distinctiveness and phylogenetic divergence, the two isolates are considered to represent two novel species of the genus , for which the names sp. nov (type strain TQ8S=KCTC 62530=CICC 24572) and sp. nov (type strain ZH2S=KCTC 62531=CICC 24505) are proposed.

Funding
This study was supported by the:
  • Youth Innovation Promotion Association of the Chinese Academy of Sciences, http://dx.doi.org/10.13039/501100004739 (Award 2014273)
  • National Natural Science Foundation of China, http://dx.doi.org/10.13039/501100001809 (Award 31722008)
  • the Science & Technology Basic Resources Investigation Program of China (Award 2017FY100300)
  • the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (Award 2019QZKK0503)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004395
2020-08-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/10/5217.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004395&mimeType=html&fmt=ahah

References

  1. Vreeland RH, Litchfield CD, Martin EL, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 1980; 30:485–495 [View Article]
    [Google Scholar]
  2. Gan L, Long X, Zhang H, Hou Y, Tian J et al. Halomonas saliphila sp. nov., a moderately halophilic bacterium isolated from a saline soil. Int J Syst Evol Microbiol 2018; 68:1153–1159 [View Article][PubMed]
    [Google Scholar]
  3. Lu H-B, Xing P, Zhai L, Phurbu D, Tang Q et al. Halomonas tibetensis sp. nov., isolated from saline lakes on Tibetan Plateau. J Microbiol 2018; 56:493–499 [View Article][PubMed]
    [Google Scholar]
  4. Lee J-C, Kim S-J, Whang K-S. Halomonas sediminicola sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment. Int J Syst Evol Microbiol 2016; 66:3865–3872 [View Article][PubMed]
    [Google Scholar]
  5. Kaye JZ, Márquez MC, Ventosa A, Baross JA. Halomonas Neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 2004; 54:499–511 [View Article][PubMed]
    [Google Scholar]
  6. Jeong SH, Lee JH, Jung JY, Lee SH, Park MS et al. Halomonas cibimaris sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Antonie van Leeuwenhoek 2013; 103:503–512 [View Article][PubMed]
    [Google Scholar]
  7. Yoon J-H, Lee K-C, Kho YH, Kang KH, Kim C-J et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52:123–130 [View Article][PubMed]
    [Google Scholar]
  8. Xiao-Ran J, Jin Y, Xiangbin C, Guo-Qiang C, Jiang XR. Halomonas and pathway engineering for bioplastics production. Methods Enzymol 2018; 608:309–328 [View Article][PubMed]
    [Google Scholar]
  9. Chen X, Yu L, Qiao G, Chen G-Q. Reprogramming Halomonas for industrial production of chemicals. J Ind Microbiol Biotechnol 2018; 45:545–554 [View Article][PubMed]
    [Google Scholar]
  10. Mnif S, Chamkha M, Sayadi S. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol 2009; 107:785–794 [View Article][PubMed]
    [Google Scholar]
  11. Kim KK, Lee J-S, Stevens DA. Microbiology and epidemiology of Halomonas species. Future Microbiol 2013; 8:1559–1573 [View Article][PubMed]
    [Google Scholar]
  12. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ et al. Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 2007; 57:2436–2446 [View Article][PubMed]
    [Google Scholar]
  13. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [View Article][PubMed]
    [Google Scholar]
  14. Kim E, Shin S-K, Choi S, Yi H. Polaribacter vadi sp. nov., isolated from a marine gastropod. Int J Syst Evol Microbiol 2017; 67:144–147 [View Article][PubMed]
    [Google Scholar]
  15. Lane DJ. Nucleic acid techniques in bacterial systematics. In Stackebrandt E, Goodfellow M. (editors) 16/23S rRNA Sequencing Chicester: Wiley; 1991 pp 115–175
    [Google Scholar]
  16. Li S, Hao J, Sun M. Cloning and characterization of a new cold-adapted and thermo-tolerant ι-carrageenase from marine bacterium Flavobacterium sp. YS-80-122. Int J Biol Macromol 2017; 102:1059–1065 [View Article][PubMed]
    [Google Scholar]
  17. Lu H-B, Xue X-F, Phurbu D, Xing P, Wu Q-L. Roseovarius tibetensis sp. nov., a halophilic bacterium isolated from Lake LongmuCo on Tibetan Plateau. J Microbiol 2018; 56:783–789 [View Article][PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Li M, Knyaz C, Tamura K et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406 [View Article][PubMed]
    [Google Scholar]
  23. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969; 18:1–32 [View Article]
    [Google Scholar]
  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  26. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017; 27:768–777 [View Article][PubMed]
    [Google Scholar]
  27. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article][PubMed]
    [Google Scholar]
  28. Lee J-C, Kim Y-S, Yun B-S, Whang K-S. Halomonas salicampi sp. nov., a halotolerant and alkalitolerant bacterium isolated from a saltern soil. Int J Syst Evol Microbiol 2015; 65:4792–4799 [View Article][PubMed]
    [Google Scholar]
  29. Poli A, Esposito E, Orlando P, Lama L, Giordano A et al. Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst Appl Microbiol 2007; 30:31–38 [View Article][PubMed]
    [Google Scholar]
  30. Fendrich C. Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid Eubacterium from Great salt lake, Utah, USA. Syst Appl Microbiol 1988; 11:36–43 [View Article]
    [Google Scholar]
  31. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  32. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article][PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R, Ramon RM. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  36. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  37. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Beijing Scientific Press; 2001 p 373
    [Google Scholar]
  38. Tang X, Zhai L, Lin Y, Yao S, Wang L et al. Halomonas alkalicola sp. nov., isolated from a household product plant. Int J Syst Evol Microbiol 2017; 67:1546–1550 [View Article][PubMed]
    [Google Scholar]
  39. Kuykendall LD, Roy MA, O'neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  40. Sasser M. Methods in phytobacteriology. In Klement Z, Rudolph K, Sands DC. (editors) Identification of Bacteria Through Fatty Acid Analysis Budapest: Akademiai Kaido; 1990 pp 199–204
    [Google Scholar]
  41. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  42. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  43. Miao C, Jia F, Wan Y, Zhang W, Lin M et al. Halomonas huangheensis sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil. Int J Syst Evol Microbiol 2014; 64:915–920 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004395
Loading
/content/journal/ijsem/10.1099/ijsem.0.004395
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed