1887

Abstract

A taxonomic study of two fluorescent strains (HJ/4 and SJ/9/1) isolated from calcite moonmilk samples obtained from two caves in the Moravian Karst in the Czech Republic was carried out. Results of initial 16S rRNA gene sequence analysis assigned both strains into the genus and showed 8H1 as their closest neighbour with 99.8 and 99.7 % 16S rRNA gene similarities to strains HJ/4 and SJ/9/1, respectively. Subsequent sequence analysis of , and housekeeping genes confirmed the highest similarity of both isolates to 8H1, but phylogeny and sequences similarities implied that they are representatives of two novel species within the genus . Further study comprising whole-genome sequencing followed by average nucleotide identity and digital DNA–DNA hybridization calculations, repetitive sequence-based PCR fingerprinting with the REP and ERIC primers, automated ribotyping with the RI restriction endonuclease, cellular fatty acid analysis, quinone and polar lipid characterization, and extensive biotyping confirmed clear separation of both analysed strains from the remaining species and showed that they represent two novel species within the genus for which the names sp. nov. (type strain HJ/4=CCM 7891=LMG 27930) and sp. nov. (type strain SJ/9/1=CCM 7893=LMG 27931) are suggested.

Funding
This study was supported by the:
  • Lenka Micenková , Ministerstvo Školství, Mládeže a Tělovýchovy , (Award CZ.02.1.01/0.0/0.0/16_013/0001761)
  • Lenka Micenková , Ministerstvo Školství, Mládeže a Tělovýchovy , (Award CZ.02.1.01/0.0/0.0/18_046/0015975)
  • Lenka Micenková , Ministerstvo Školství, Mládeže a Tělovýchovy , (Award LM2018121)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004393
2020-08-21
2020-09-22
Loading full text...

Full text loading...

References

  1. Palleroni NJ, Genus I. Pseudomonas Migula 1894, 237AL (Nom. Cons., Opin. 5 of the Jud. Comm. 1952, 121). In Garrity GM, Brenner DJ, Krieg NR, Staley JT. (editors) Bergey's Manual of Systematic Bacteriology, Volume 2, The Proteobacteria, Part B The Gammaproteobacteria 2015 New York: Springer; pp 323–379
    [Google Scholar]
  2. Moore ERB, Tindall BJ, Martins Dos Santos VAP, Pieper DH, Ramos J-L et al. Nonmedical: Pseudomonas. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes: A Handbook on the Biology of Bacteria, Third Edition, Volume 6, Proteobacteria: Gamma Subclass New York, USA: Springer; 2006 pp 646–703
    [Google Scholar]
  3. Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas. In Jorgensen JH, Pfaller MA, Carroll KC, Landry ML, Funke G et al. (editors) Manual of Clinical Microbiology Washington, USA: ASM Press; 2015 pp 773–790
    [Google Scholar]
  4. Parte AC. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  5. Cañaveras JC, Cuezva S, Sanchez-Moral S, Lario J, Laiz L et al. On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften 2006; 93:27–32 [CrossRef][PubMed]
    [Google Scholar]
  6. Baskar S, Baskar R, Routh J. Biogenic evidences of Moonmilk deposition in the Mawmluh cave, Meghalaya, India. Geomicrobiol J 2011; 28:252–265 [CrossRef]
    [Google Scholar]
  7. Castanier S, Le Métayer-Levrel G, Perthuisot J-P. Ca-carbonates precipitation and limestone genesis — the microbiogeologist point of view. Sediment Geol 1999; 126:9–23 [CrossRef]
    [Google Scholar]
  8. Jones B, Kahle CF. Morphology, relationship, and origin of fiber and dendrite calcite crystals. J Sediment Petrol 1993; 63:1018–1031
    [Google Scholar]
  9. Richter DK, Immenhauser A, Neuser RD. Electron Backscatter diffraction documents randomly orientated c-axes in moonmilk calcite fibres: evidence for biologically induced precipitation. Sedimentology 2008; 55:487–497 [CrossRef]
    [Google Scholar]
  10. Maciejewska M, Adam D, Naômé A, Martinet L, Tenconi E et al. Assessment of the Potential Role of Streptomyces in Cave Moonmilk Formation. Front Microbiol 2017; 8:1181 [CrossRef][PubMed]
    [Google Scholar]
  11. Curry M, Boston P, Spilde M, Baichtal J, Campbell A. Cottonballs, a unique subaqeous moonmilk, and abundant subaerial moonmilk in cataract cave, Tongass national forest, Alaska. Int J Speleol 2009; 38:111–128 [CrossRef]
    [Google Scholar]
  12. Reitschuler C, Spötl C, Hofmann K, Wagner AO, Illmer P. Archaeal distribution in moonmilk deposits from alpine caves and their ecophysiological potential. Microb Ecol 2016; 71:686–699 [CrossRef][PubMed]
    [Google Scholar]
  13. Summers Engel A, Paoletti M, Beggio M, Dorigo L, Pamio A et al. Comparative microbial community composition from secondary carbonate (moonmilk) deposits: implications for the Cansiliella servadeii cave hygropetric food web. Int J Speleol 2013; 42:181–192 [CrossRef]
    [Google Scholar]
  14. Reitschuler C, Lins P, Schwarzenauer T, Spötl C, Wagner AO et al. New undescribed lineages of non-extremophilic archaea form a homogeneous and dominant element within alpine moonmilk microbiomes. Geomicrobiol J 2015; 32:890–902 [CrossRef]
    [Google Scholar]
  15. Rooney DC, Hutchens E, Clipson N, Baldini J, McDermott F. Microbial community diversity of moonmilk deposits at Ballynamintra cave, Co. Waterford, Ireland. Microb Ecol 2010; 60:753–761 [CrossRef][PubMed]
    [Google Scholar]
  16. Jones D, Pell PA, Sneath PHA. Maintenance of bacteria on glass beads at -60 °C to -76 °C. In Kirsop BE, Doyle A. (editors) Maintenance of Microorganism and Cultured Cells. A Manual of Laboratory Methods London: Academic Press; 1991 pp 45–50
    [Google Scholar]
  17. Mariani BD, Levine MJ, Booth RE, Tuan RS. Development of a novel, rapid processing protocol for polymerase chain reaction-based detection of bacterial infections in synovial fluids. Mol Biotechnol 1995; 4:227–237 [CrossRef][PubMed]
    [Google Scholar]
  18. Wiedmann M, Weilmeier D, Dineen SS, Ralyea R, Boor KJ. Molecular and phenotypic characterization of Pseudomonas spp. isolated from milk. Appl Environ Microbiol 2000; 66:2085–2095 [CrossRef][PubMed]
    [Google Scholar]
  19. Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 2002; 148:257–266 [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  26. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [CrossRef][PubMed]
    [Google Scholar]
  27. Mulet M, Bennasar A, Lalucat J, García-Valdés E. An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes 2009; 23:140–147 [CrossRef][PubMed]
    [Google Scholar]
  28. Ait Tayeb L, Ageron E, Grimont F, Grimont PAD. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 2005; 156:763–773 [CrossRef][PubMed]
    [Google Scholar]
  29. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2019. Available online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc.
  30. Krueger F. Trim Galore: wrapper script for quality and adapter trimming. 2019. Available online at: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore.
  31. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17:10–12 [CrossRef]
    [Google Scholar]
  32. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [CrossRef][PubMed]
    [Google Scholar]
  33. Bushnell B. BBMap: BBTools is a suite of bioinformatics tools for analysis of DNA and RNA sequence data. 2019. Available online at: https://sourceforge.net/projects/bbmap.
  34. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  35. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [CrossRef][PubMed]
    [Google Scholar]
  39. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [CrossRef][PubMed]
    [Google Scholar]
  40. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 1994; 5:25–40
    [Google Scholar]
  41. Gevers D, Huys G, Swings J. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 2001; 205:31–36 [CrossRef][PubMed]
    [Google Scholar]
  42. Švec P, Nováková D, Žáčková L, Kukletová M, Sedláček I. Evaluation of (GTG)5-PCR for rapid identification of Streptococcus mutans. Antonie van Leeuwenhoek 2008; 94:573–579 [CrossRef][PubMed]
    [Google Scholar]
  43. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE, USA: Microbial ID, Inc; 1990
    [Google Scholar]
  44. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  45. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:251–256 [CrossRef][PubMed]
    [Google Scholar]
  46. Komagata K, Suzuki K-I. Lipid and Cell-Wall Analysis in Bacterial Systematics. In Colwell RR, Grigorova R. (editors) Methods in Microbiology 19 Academic Press; 1988 pp 161–207
    [Google Scholar]
  47. Arnau VG, Sánchez LA, Delgado OD. Pseudomonas yamanorum sp. nov., a psychrotolerant bacterium isolated from a subantarctic environment. Int J Syst Evol Microbiol 2015; 65:424–431 [CrossRef][PubMed]
    [Google Scholar]
  48. Carlone GM, Valadez MJ, Pickett MJ. Methods for distinguishing Gram-positive from Gram-negative bacteria. J Clin Microbiol 1982; 16:1157–1159 [CrossRef][PubMed]
    [Google Scholar]
  49. Hugh R, Leifson E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J Bacteriol 1953; 66:24–26 [CrossRef][PubMed]
    [Google Scholar]
  50. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307[PubMed]
    [Google Scholar]
  51. Lowe GH. The rapid detection of lactose fermentation in paracolon organisms by the demonstration of beta-D-galactosidase. J Med Lab Technol 1962; 19:21–25[PubMed]
    [Google Scholar]
  52. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Great Britain: Cambridge University Press; 1993
    [Google Scholar]
  53. Brooks K, Sodeman T. A rapid method for determining decarboxylase and dihydrolase activity. J Clin Pathol 1974; 27:148–152 [CrossRef][PubMed]
    [Google Scholar]
  54. Páčová Z, Kocur M. New medium for detection of esterase and gelatinase activity. Zentralbl Bakteriol Mikrobiol Hyg A 1984; 258:69–73 [CrossRef][PubMed]
    [Google Scholar]
  55. Kurup VP, Babcock JB. Use of casein, tyrosine, and hypoxanthine in the identification of nonfermentative Gram-negative bacilli. Med Microbiol Immunol 1979; 167:71–75 [CrossRef][PubMed]
    [Google Scholar]
  56. Christensen WB. Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 1946; 52:461–466 [CrossRef][PubMed]
    [Google Scholar]
  57. Owens JJ. The egg yolk reaction produced by several species of bacteria. J Appl Bacteriol 1974; 37:137–148 [CrossRef][PubMed]
    [Google Scholar]
  58. Oberhofer TR, Rowen JW. Acetamide agar for differentiation of nonfermentative bacteria. Appl Microbiol 1974; 28:720–721 [CrossRef][PubMed]
    [Google Scholar]
  59. Ewing WH. Enterobacteriaceae. Biochemical methods for group differentation. Public Health Service Publication No 734 CDC Atlanta: 1960
    [Google Scholar]
  60. Weyant RS, Moss CW, Weaver RE, Hollis DG, Jordan JJ et al. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd edn. Baltimore, MD: Williams & Wilkins; 1996 pp 15–16
    [Google Scholar]
  61. EUCAST Breakpoint tables for interpretation of MICs and zone diameters, version 7.1. The European Committee on antimicrobial susceptibility testing. www.eucast.org; 2017
  62. CLSI Performance standards for antimicrobial susceptibility testing. Twenty-Fifth informational supplement; 2015; 35
  63. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004393
Loading
/content/journal/ijsem/10.1099/ijsem.0.004393
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error