1887

Abstract

A novel actinobacterial strain, designated 15TR583, was isolated from a waterlogged acidic soil collected near the town of Trebon, Czech Republic, and was subjected to a polyphasic taxonomic characterization. Phylogenetic analysis based on 16S rRNA gene and whole-genome sequences revealed that the organism forms an individual line of descent related to the order , class . The strain shared highest 16S rRNA gene sequence similarity, yet of only 92.8%, with IFO 14752. The strain grew in white colonies of aerobic, Gram-stain-positive, unbranching substrate mycelium bearing single spores at hyphae tips. The major fatty acids (>10%) were iso-C, C, isoCω9 and 10-methyl-C. The fatty acid pattern differed from all patterns currently described for actinobacterial genera. The organism contained as major menaquinones MK9(H) and MK9(H), which differentiated it from other actinobacterial families. Polar lipids were composed of six unidentified glycolipids, an unidentified phosphoglycolipid, two unidentified phospholipids and two unidentified aminolipids. Whole-cell sugars contained galactose, xylose and arabinose as major components. The peptidoglycan type was A1γ -diaminopimelic acid. The genomic DNA G+C content was 69.7 mol%. The distinct phylogenetic position and unusual combination of chemotaxonomic characteristics justify the proposal of gen. nov., with the type species sp. nov. (type strain 15TR583=CCM 8942=DSM 109105), within fam. nov.

Funding
This study was supported by the:
  • , Grantová Agentura, Univerzita Karlova, http://dx.doi.org/10.13039/100007543, (Award GAUK990218)
  • , Ministerstvo Zemědělství, http://dx.doi.org/10.13039/501100006533, (Award RO0418)
  • , Grantová Agentura České Republiky, http://dx.doi.org/10.13039/501100001824, (Award 15-01312S)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004388
2020-08-17
2020-11-25
Loading full text...

Full text loading...

References

  1. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria . Front Microbiol 2018; 9:2007 [CrossRef][PubMed]
    [Google Scholar]
  2. Salam N, Jiao J-Y, Zhang X-T, Li W-J. Update on the classification of higher ranks in the phylum Actinobacteria . Int J Syst Evol Microbiol 2020; 70:1331–1355 [CrossRef][PubMed]
    [Google Scholar]
  3. Kopecky J, Kyselkova M, Omelka M, Cermak L, Novotna J et al. Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest. FEMS Microbiol Ecol 2011; 78:386–394 [CrossRef][PubMed]
    [Google Scholar]
  4. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new Hierarchic classification system, Actinobacteriaactinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [CrossRef]
    [Google Scholar]
  5. Zhi X-Y, Li W-J, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589–608 [CrossRef][PubMed]
    [Google Scholar]
  6. Kabelitz N, Machackova J, Imfeld G, Brennerova M, Pieper DH et al. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX. Appl Microbiol Biotechnol 2009; 82:565–577 [CrossRef][PubMed]
    [Google Scholar]
  7. Hui N, Liu X-X, Kurola J, Mikola J, Lead RM. Pb) contamination alters richness and diversity of the fungal, but not the bacterial community in pine forest soil. Boreal Env Res 2012; 17:46–58
    [Google Scholar]
  8. Sagova-Mareckova M, Omelka M, Cermak L, Kamenik Z, Olsovska J et al. Microbial communities show parallels at sites with distinct litter and soil characteristics. Appl Environ Microbiol 2011; 77:7560–7567 [CrossRef][PubMed]
    [Google Scholar]
  9. García-Moyano A, González-Toril E, Aguilera A, Amils R. Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Río Tinto (SW, Spain). Syst Appl Microbiol 2007; 30:601–614 [CrossRef][PubMed]
    [Google Scholar]
  10. Liu J, Zheng C, Song C, Guo S, Liu X et al. Conversion from natural wetlands to paddy field alters the composition of soil bacterial communities in Sanjiang plain, Northeast China. Ann Microbiol 2014; 64:1395–1403 [CrossRef]
    [Google Scholar]
  11. Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S et al. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 2008; 10:926–941 [CrossRef][PubMed]
    [Google Scholar]
  12. Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 2003; 69:7210–7215 [CrossRef][PubMed]
    [Google Scholar]
  13. Sait M, Hugenholtz P, Janssen PH. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 2002; 4:654–666 [CrossRef][PubMed]
    [Google Scholar]
  14. Goodfellow M et al. Streptosporangiales ord. nov. In Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J et al. (editors) Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc; 2015
    [Google Scholar]
  15. Lu S, Gischkat S, Reiche M, Akob DM, Hallberg KB et al. Ecophysiology of Fe-cycling bacteria in acidic sediments. Appl Environ Microbiol 2010; 76:8174–8183 [CrossRef][PubMed]
    [Google Scholar]
  16. Bredholt H, Fjaervik E, Johnsen G, Zotchev SB. Actinomycetes from sediments in the Trondheim Fjord, Norway: diversity and biological activity. Mar Drugs 2008; 6:12–24 [CrossRef][PubMed]
    [Google Scholar]
  17. FAO World reference base for soil resources 2006. A framework for international classification, correlation and communication; 2006
  18. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7 [CrossRef][PubMed]
    [Google Scholar]
  19. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ et al. Genetic Manipulation of Streptomyces - a Laboratory Manual Norwich, United Kingdom: The John Innes Foundation; 1985
    [Google Scholar]
  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  21. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [CrossRef]
    [Google Scholar]
  22. Čermák L, Kopecký J, Novotná J, Omelka M, Parkhomenko N et al. Bacterial communities of two contrasting soils reacted differently to lincomycin treatment. Applied Soil Ecology 2008; 40:348–358 [CrossRef]
    [Google Scholar]
  23. Bruce KD, Hiorns WD, Hobman JL, Osborn AM, Strike P et al. Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microbiol 1992; 58:3413–3416 [CrossRef][PubMed]
    [Google Scholar]
  24. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  25. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [CrossRef][PubMed]
    [Google Scholar]
  26. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  27. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012; 9:772 [CrossRef][PubMed]
    [Google Scholar]
  28. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [CrossRef][PubMed]
    [Google Scholar]
  29. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010
  30. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17:10–12 [CrossRef]
    [Google Scholar]
  31. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [CrossRef][PubMed]
    [Google Scholar]
  32. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [CrossRef][PubMed]
    [Google Scholar]
  33. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufo S et al. Prokaryotic genome annotation pipeline. The NCBI Handbook [Internet], 2nd ed. US: National Center for Biotechnology Information; 2013
    [Google Scholar]
  34. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [CrossRef][PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:1–10 [CrossRef]
    [Google Scholar]
  36. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [CrossRef][PubMed]
    [Google Scholar]
  37. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [CrossRef][PubMed]
    [Google Scholar]
  38. Meier‐Kolthoff JP, Auch AF, Klenk H-P, Göker M. Highly parallelized inference of large genome-based phylogenies. Concurr Comput Pract Exp 2014; 26:1715–1729 [CrossRef]
    [Google Scholar]
  39. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 2018; 36:566–569 [CrossRef][PubMed]
    [Google Scholar]
  40. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [CrossRef]
    [Google Scholar]
  41. Carlone GM, Valadez MJ, Pickett MJ. Methods for distinguishing Gram-positive from Gram-negative bacteria. J Clin Microbiol 1982; 16:1157–1159 [CrossRef][PubMed]
    [Google Scholar]
  42. Gauze G, Preobrazhenskaya T, Sveshnikova M, Terekhova L. A Guide for the Determination of Actinomycetes. Genera Streptomyces, Streptoverticillium and Chainia Nauka, Moscow: 1983
    [Google Scholar]
  43. Barrow G, Feltham R. Characters of Gram-positive bacteria. In Cowan and Steel’s Manual for the identification of Medical bacteria 52 New York, NY: Cambridge Univ. Press; 1993
    [Google Scholar]
  44. Atlas R. Handbook of Microbiological Media, 4th ed. New York: 2010
    [Google Scholar]
  45. Margesin R, Gander S, Zacke G, Gounot AM, Schinner F. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 2003; 7:451–458 [CrossRef][PubMed]
    [Google Scholar]
  46. Schumann P, structure P. Peptidoglycan structure. Methods in Microbiology Elsevier; 2011 pp 101–129
    [Google Scholar]
  47. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [CrossRef][PubMed]
    [Google Scholar]
  48. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [CrossRef]
    [Google Scholar]
  49. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [CrossRef]
    [Google Scholar]
  50. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Methods Gen Mol Microbiol, 3rd ed. 2007 pp 330–393
    [Google Scholar]
  51. Kroppenstedt R. Fatty acid and menaquinone analysis of actinomycetes and related organisms. Chem Methods Bact Syst 1985173–199
    [Google Scholar]
  52. Mohammadipanah F, Dehhaghi M. Classification and taxonomy of Actinobacteria . In In Wink J, Mohammadipanah F, Hamedi J. (editors) Biology and Biotechnology of Actinobacteria Cham: Springer International Publishing; 2017 pp 51–77
    [Google Scholar]
  53. Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999; 16:1114–1116 [CrossRef]
    [Google Scholar]
  54. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [CrossRef]
    [Google Scholar]
  55. Lechevalier M. Phospholipids in the taxonomy of actinomycetes. Actinomycetes 1981111–116
    [Google Scholar]
  56. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004388
Loading
/content/journal/ijsem/10.1099/ijsem.0.004388
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error