1887

Abstract

A Gram-stain-variable, facultatively anaerobic, endospore-forming, rod-shaped bacterium, designated HB172198, was isolated from brown alga collected at Qishui Bay, Hainan, PR China. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain HB172198 belonged to the genus , and the closest phylogenetically related species was NBRC 109972 (97.6% similarity). The other 16S rRNA gene sequence similarities were under 97.0%. The whole genome average nucleotide identity value between strain HB172198 and the closest type strain was 75.3% and the DNA–DNA hybridization value was 20.2%. The predominant isoprenoid quinone was menaquinone 7 and the major fatty acids were anteiso-C, C, anteiso-C, iso C and C ω11. The combined phylogenetic relatedness, phenotypic and genotypic features supported the conclusion that strain HB172198 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HB172198 (=CGMCC 1.13583=JCM 32683).

Funding
This study was supported by the:
  • Central Public-interest Scientific Institution Basal Research Fund of CATAS from Chinese Government (Award 19CXTD-32)
    • Principle Award Recipient: Huiqin Huang
  • Central Public-interest Scientific Institution Basal Research Fund of CATAS from Chinese Government (Award 1630052019010)
    • Principle Award Recipient: Shixiang Bao
  • Central Public-interest Scientific Institution Basal Research Fund of CATAS from Chinese Government (Award 1630052016011)
    • Principle Award Recipient: Huiqin Huang
  • Financial Fund of the Ministry of Agriculture and Rural Affairs of China (Award NFZX2018)
    • Principle Award Recipient: Yonghua Hu
  • Key Research and Development Project of Hainan Province (Award ZDYF2019133)
    • Principle Award Recipient: Shixiang Bao
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004385
2020-08-13
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/9/5087.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004385&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 1994; 64:253–260 [View Article]
    [Google Scholar]
  2. Tindall BJ. What is the type species of the genus Paenibacillus? Request for an opinion. Int J Syst Evol Microbiol 2000; 50:939–940 [View Article][PubMed]
    [Google Scholar]
  3. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 1997; 47:289–298 [View Article]
    [Google Scholar]
  4. Kämpfer P, Falsen E, Lodders N, Martin K, Kassmannhuber J et al. Paenibacillus chartarius sp. nov., isolated from a paper mill. Int J Syst Evol Microbiol 2012; 62:1342–1347 [View Article][PubMed]
    [Google Scholar]
  5. Berge O, Guinebretière M-H, Achouak W, Normand P, Heulin T. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 2002; 52:607–616 [View Article][PubMed]
    [Google Scholar]
  6. Glaeser SP, Falsen E, Busse H-J, Kämpfer P. Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol 2013; 63:777–782 [View Article][PubMed]
    [Google Scholar]
  7. Beneduzi A, Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH et al. Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum . Int J Syst Evol Microbiol 2010; 60:128–133 [View Article][PubMed]
    [Google Scholar]
  8. Lee J, Shin N-R, Jung M-J, Roh SW, Kim M-S et al. Paenibacillus oceanisediminis sp. nov. isolated from marine sediment. Int J Syst Evol Microbiol 2013; 63:428–434 [View Article][PubMed]
    [Google Scholar]
  9. Park M-H, Traiwan J, Jung MY, Nam YS, Jeong JH et al. Paenibacillus chungangensis sp. nov., isolated from a tidal-flat sediment. Int J Syst Evol Microbiol 2011; 61:281–285 [View Article][PubMed]
    [Google Scholar]
  10. Huang X-F, Wang F-Z, Zhang W, Li J, Ling J et al. Paenibacillus abyssi sp. nov., isolated from an abyssal sediment sample from the Indian Ocean. Antonie van Leeuwenhoek 2014; 106:1089–1095 [View Article][PubMed]
    [Google Scholar]
  11. Das SN, Wagenknecht M, Nareddy PK, Bhuvanachandra B, Niddana R et al. Amino groups of chitosan are crucial for binding to a family 32 carbohydrate binding module of a chitosanase from Paenibacillus elgii . J Biol Chem 2016; 291:18977–18990 [View Article][PubMed]
    [Google Scholar]
  12. Dong M, Yang Y, Tang X, Shen J, Xu B et al. NaCl-, protease-tolerant and cold-active endoglucanase from Paenibacillus sp. YD236 isolated from the feces of Bos frontalis . Springerplus 2016; 5:746–757 [View Article][PubMed]
    [Google Scholar]
  13. Phakeenuya V, Ratanakhanokchai K, Kosugi A, Tachaapaikoon C. A novel multifunctional GH9 enzyme from Paenibacillus curdlanolyticus B-6 exhibiting endo/exo functions of cellulase, mannanase and xylanase activities. Appl Microbiol Biotechnol 2020; 104:2079–2096 [View Article][PubMed]
    [Google Scholar]
  14. Kurakake M, Kitagawa Y, Okazaki A, Shimizu K, Yuhei Kitagawa YH. Enzymatic properties of alginate lyase from Paenibacillus sp. S29. Appl Biochem Biotechnol 2017; 183:1455–1464 [View Article][PubMed]
    [Google Scholar]
  15. Liu H, Cheng Y, Gu J, Wang Y, Li J et al. Draft genome sequence of Paenibacillus sp. strain MY03, a terrestrial bacterium capable of degrading multiple marine-derived Polysaccharides . Genome Announc 2017; 5:e00678–17 [View Article][PubMed]
    [Google Scholar]
  16. Wang M, Chen L, Zhang Z, Wang X, Qin S et al. Screening of alginate lyase-excreting microorganisms from the surface of brown algae. AMB Express 2017; 7:74–82 [View Article][PubMed]
    [Google Scholar]
  17. Hisano T, Nishimura M, Yamashita T, Imanaka T, Muramatsu T et al. A simple method for determination of substrate specificity of alginate lyases. J Fermen Bioeng 1994; 78:182–184 [View Article]
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  22. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [View Article][PubMed]
    [Google Scholar]
  23. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  25. Kittiwongwattana C, Thawai C, sp Plemnae. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). Int J Syst Evol Microbiol 2015; 65:107–112
    [Google Scholar]
  26. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article][PubMed]
    [Google Scholar]
  27. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679 [View Article][PubMed]
    [Google Scholar]
  28. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article][PubMed]
    [Google Scholar]
  29. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  30. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014; 42:D490–D495 [View Article][PubMed]
    [Google Scholar]
  31. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–73 [View Article][PubMed]
    [Google Scholar]
  33. Moore L, Moore E, Murray R, Stackebrandt E, Starr M. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  34. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  35. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  36. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  38. Ruan JS. A rapid determination method for phosphate lipids. Microbiol China 2006; 37:190–193
    [Google Scholar]
  39. Komagata K, Suzuki KI. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  40. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  41. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  42. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004385
Loading
/content/journal/ijsem/10.1099/ijsem.0.004385
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error