1887

Abstract

A Gram stain-positive, non-spore-forming, non-motile and rod-shaped actinomycete, strain 5221, was isolated from the sediment of a river collected at Ronggui in the Pearl River Delta, PR China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain formed a distinct lineage within the genus and had the highest sequence similarity to Tp12 (96.7 %), followed by 2C6-41 (96.5 %), SST-8 (96.0 %) and 20 (95.9 %). The results of chemotaxonomic analyses, including detecting anteiso-C, anteiso-C, and C as the major cellular fatty acids, diphosphatidylglycerol, phosphatidylglycerol and three phosphoglycolipids as the polar lipids, MK-8(H) as the major menaquinone, and a DNA G+C content of 72.4 mol%, supported that strain 5221 is a member of the genus . Furthermore, low sequence similarities of 16S rRNA gene sequences, differences in fatty acid compositions and differential physiological characteristics such as enzyme activity and carbon sources utilization ability distinguished the isolate from its close relatives. Therefore, strain 5221 represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain 5221 (=GDMCC 1.1766=KACC 21700).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004379
2020-08-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/10/5205.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004379&mimeType=html&fmt=ahah

References

  1. Breed RS. The Brevibacteriaceae fam. nov. of order Eubacteriales. Riass Commun VI Congr Int Microbiol Roma 1953; 1:13–14
    [Google Scholar]
  2. Tang S-K, Wang Y, Schumann P, Stackebrandt E, Lou K et al. Brevibacterium album sp. nov., a novel actinobacterium isolated from a saline soil in China. Int J Syst Evol Microbiol 2008; 58:574–577 [View Article][PubMed]
    [Google Scholar]
  3. Tonouchi A, Kitamura K, Fujita T. Brevibacterium yomogidense sp. nov., isolated from a soil conditioner made from poultry manure. Int J Syst Evol Microbiol 2013; 63:516–520 [View Article][PubMed]
    [Google Scholar]
  4. Lee SD. Brevibacterium samyangense sp. nov., an actinomycete isolated from a beach sediment. Int J Syst Evol Microbiol 2006; 56:1889–1892 [View Article][PubMed]
    [Google Scholar]
  5. Bhadra B, Raghukumar C, Pindi PK, Shivaji S. Brevibacterium oceani sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean. Int J Syst Evol Microbiol 2008; 58:57–60 [View Article][PubMed]
    [Google Scholar]
  6. Guan T-W, Zhao K, Xiao J, Liu Y, Xia Z-F et al. Brevibacterium salitolerans sp. nov., an actinobacterium isolated from salt-lake sediment. Int J Syst Evol Microbiol 2010; 60:2991–2995 [View Article][PubMed]
    [Google Scholar]
  7. Chen P, Zhang L, Wang J, Ruan J, Han X et al. Brevibacterium sediminis sp. nov., isolated from deep-sea sediments from the Carlsberg and Southwest Indian ridges. Int J Syst Evol Microbiol 2016; 66:5268–5274 [View Article][PubMed]
    [Google Scholar]
  8. Wauters G, Charlier J, Janssens M, Delmée M. Brevibacterium paucivorans sp. nov., from human clinical specimens. Int J Syst Evol Microbiol 2001; 51:1703–1707 [View Article][PubMed]
    [Google Scholar]
  9. Bernard KA, Pacheco AL, Burdz T, Wiebe D, Huynh C et al. Brevibacterium massiliense (Roux and Raoult 2009) is a later heterotypic synonym of Brevibacterium ravenspurgense (Mages, Frodl, Bernard and Funke 2009), using whole-genome sequence analysis as a comparative tool. Int J Syst Evol Microbiol 2016; 66:4440–4444 [View Article][PubMed]
    [Google Scholar]
  10. Pascual C, Collins MD, Funke G, Pitcher DG. Phenotypic and genotypic characterization of two Brevibacterium strains from the human ear: description of Brevibacterium otitidis sp. nov. Med Microbiol Lett 1996; 5:113–123
    [Google Scholar]
  11. Wauters G, Avesani V, Laffineur K, Charlier J, Janssens M et al. Brevibacterium lutescens sp. nov., from human and environmental samples. Int J Syst Evol Microbiol 2003; 53:1321–1325 [View Article][PubMed]
    [Google Scholar]
  12. Wauters G, Haase G, Avesani V, Charlier J, Janssens M et al. Identification of a novel Brevibacterium species isolated from humans and description of Brevibacterium sanguinis sp. nov. J Clin Microbiol 2004; 42:2829–2832 [View Article][PubMed]
    [Google Scholar]
  13. Roux V, Raoult D. Brevibacterium massiliense sp. nov., isolated from a human ankle discharge. Int J Syst Evol Microbiol 2009; 59:1960–1964 [View Article][PubMed]
    [Google Scholar]
  14. Kokcha S, Ramasamy D, Lagier J-C, Robert C, Raoult D et al. Non-contiguous finished genome sequence and description of Brevibacterium senegalense sp. nov. Stand Genomic Sci 2012; 7:233–245 [View Article][PubMed]
    [Google Scholar]
  15. Collins MD. The genus Brevibacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors). Prokaryotes New York: Springer; 2006 pp 1013–1019
    [Google Scholar]
  16. Cui Y, Kang M-S, Woo S-G, Jin L, Kim KK et al. Brevibacterium daeguense sp. nov., a nitrate-reducing bacterium isolated from a 4-chlorophenol enrichment culture. Int J Syst Evol Microbiol 2013; 63:152–157 [View Article][PubMed]
    [Google Scholar]
  17. Choi KD, Siddiqi MZ, Liu Q, Muhammad Shafi S, Durrani Y et al. Brevibacterium hankyongi sp. nov., isolated from compost. Int J Syst Evol Microbiol 2018; 68:2783–2788 [View Article][PubMed]
    [Google Scholar]
  18. Katı H, İnce İkbal Agah, Demir İsmail, Demirbağ Z, Ince IA. Brevibacterium pityocampae sp. nov., isolated from caterpillars of Thaumetopoea pityocampa (Lepidoptera, Thaumetopoeidae). Int J Syst Evol Microbiol 2010; 60:312–316 [View Article][PubMed]
    [Google Scholar]
  19. Kumar M, Verma M, Lal R. Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 2008; 58:861–865 [View Article][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  22. Claus D. A standardized gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article][PubMed]
    [Google Scholar]
  23. Leifson E. Atlas of Bacterial Flagellation London: Academic Press; 1960
    [Google Scholar]
  24. Song Y, Yang R, Guo Z, Zhang M, Wang X et al. Distinctness of spore and vegetative cellular fatty acid profiles of some aerobic endospore-forming bacilli. J Microbiol Methods 2000; 39:225–241 [View Article][PubMed]
    [Google Scholar]
  25. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  26. Nishijima M, Araki-Sakai M, Sano H. Identification of isoprenoid quinones by Frit-FAB liquid chromatography–mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 1997; 28:113–122 [View Article]
    [Google Scholar]
  27. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  28. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119–0 [View Article][PubMed]
    [Google Scholar]
  29. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article][PubMed]
    [Google Scholar]
  30. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  31. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004379
Loading
/content/journal/ijsem/10.1099/ijsem.0.004379
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error