1887

Abstract

A fructose-6-phosphate phosphoketolase-positive strain (GSD1FS) was isolated from a faecal sample of a 3 weeks old German Shepherd dog. The closest related taxa to isolate GSD1FS based on results from the EZBioCloud database were subsp. ATCC 25527, subsp. DSM 10140 and LMG 30189, belonging to the phylogenetic group. The resulting 16S rRNA gene identities (compared length of 1454 nucleotides) towards these taxa were 97.30, 97.23 and 97.09 %, respectively. The pairwise similarities of strain GSD1FS using , , , 60, , , and gene fragments to all valid representatives of the phylogenetic group were in the concatenated range of 83.08–88.34 %. Phylogenomic analysis based on whole-genome methods such as average nucleotide identity revealed that bifidobacterial strain GSD1FS exhibits close phylogenetic relatedness (88.17 %) to LMG 10738. Genotypic characteristics and phylogenetic analyses based on nine molecular markers, as well as genomic and comparative phenotypic analyses, clearly proved that the evaluated strain should be considered as representing a novel species within the phylogenetic group named as sp. nov. (GSD1FS=DSM 105923=LMG 30345=CCM 8806).

Funding
This study was supported by the:
  • Ivona Svobodova , Ministerstvo Vnitra České Republiky , (Award 420 MVČR VI20172020088)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004378
2020-08-17
2020-09-28
Loading full text...

Full text loading...

References

  1. Bunesova V, Vlkova E, Rada V, Killer J, Musilova S. Bifidobacteria from the gastrointestinal tract of animals: differences and similarities. Benef Microbes 2014; 5:377–388 [CrossRef]
    [Google Scholar]
  2. Lugli GA, Duranti S, Albert K, Mancabelli L, Napoli S et al. Unveiling genomic diversity among members of the species Bifidobacterium pseudolongum, a widely distributed gut commensal of the animal kingdom. Appl Environ Microbiol 2019; 85:AEM.03065-18 [CrossRef]
    [Google Scholar]
  3. Strompfová V, Lauková A. Isolation and characterization of faecal bifidobacteria and lactobacilli isolated from dogs and primates. Anaerobe 2014; 29:108–112 [CrossRef]
    [Google Scholar]
  4. Sabbioni A, Ferrario C, Milani C, Mancabelli L, Riccardi E et al. Modulation of the bifidobacterial communities of the dog microbiota by zeolite. Front Microbiol 2016; 7: [CrossRef]
    [Google Scholar]
  5. Bunešová V, Vlková E, Rada V, Ročková Šárka, Svobodová I et al. Bifidobacterium animalis subsp. lactis strains isolated from dog faeces. Vet Microbiol 2012; 160:501–505 [CrossRef]
    [Google Scholar]
  6. Bosch G, Hagen-Plantinga EA, Hendriks WH. Dietary nutrient profiles of wild wolves: insights for optimal dog nutrition?. Br J Nutr 2015; 113:S40–S54 [CrossRef]
    [Google Scholar]
  7. Clauss M, Kleffner H, Kienzle E. Carnivorous mammals: nutrient digestibility and energy evaluation. Zoo Biol 2010; 29:687–704 [CrossRef]
    [Google Scholar]
  8. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G et al. Cohabiting family members share microbiota with one another and with their dogs. eLife. 2013; 2013:
    [Google Scholar]
  9. Vlková E, Salmonová H, Bunešová V, Geigerová M, Rada V et al. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria. Anaerobe 2015; 34:27–33 [CrossRef]
    [Google Scholar]
  10. Orban JI, Patterson JA. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J Microbiol Methods 2000; 40:221–224 [CrossRef]
    [Google Scholar]
  11. Kim BJ, Kim H-Y, Yun Y-J, Kim B-J, Kook Y-H. Differentiation of Bifidobacterium species using partial RNA polymerase β-subunit (rpoB) gene sequences. Int J Syst Evol Microbiol 2010; 60:2697–2704 [CrossRef]
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef]
    [Google Scholar]
  13. Lugli GA, Mangifesta M, Duranti S, Anzalone R, Milani C et al. Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp nov., Bifidobacterium criceti sp nov., Bifidobacterium imperatoris sp nov., Bifidobacterium italicum sp nov., Bifidobacterium margollesii sp nov and Bifidobacterium parmae sp nov. systematic and applied microbiology; 2018; 41173–183
  14. Jian W, Zhu L, Dong X. New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences. Int J Syst Evol Microbiol 2001; 51:1633–1638 [CrossRef]
    [Google Scholar]
  15. Berthoud H, Chavagnat F, Haueter M, Casey MG. Comparison of partial gene sequences encoding a phosphoketolase for the identification of bifidobacteria. LWT - Food Science and Technology 2005; 38:101–105 [CrossRef]
    [Google Scholar]
  16. Delétoile A, Passet V, Aires J, Chambaud I, Butel M-J et al. Species delineation and clonal diversity in four Bifidobacterium species as revealed by multilocus sequencing. Res Microbiol 2010; 161:82–90 [CrossRef]
    [Google Scholar]
  17. Killer J, Mekadim C, Pechar R, Bunešová V, Mrázek J et al. Gene encoding the CTP synthetase as an appropriate molecular tool for identification and phylogenetic study of the family Bifidobacteriaceae. Microbiologyopen 2018; 7:e00579 [CrossRef]
    [Google Scholar]
  18. Killer J, Mekadim C, Pechar R, Bunešová V, Vlková E. The threonine-tRNA ligase gene region is applicable in classification, typing, and phylogenetic analysis of bifidobacteria. J Microbiol 2018; 56:713–721 [CrossRef]
    [Google Scholar]
  19. Duranti S, Lugli GA, Napoli S, Anzalone R, Milani C et al. Characterization of the phylogenetic diversity of five novel species belonging to the genus Bifidobacterium: Bifidobacterium castoris sp. nov., Bifidobacterium callimiconis sp. nov., Bifidobacterium goeldii sp. nov., Bifidobacterium samirii sp. nov. and Bifidobacterium dolichotidis sp. nov. Int J Syst Evol Microbiol 2019; 69:1288–1298 [CrossRef]
    [Google Scholar]
  20. Lugli GA, Milani C, Mancabelli L, van Sinderen D, Ventura M. MEGAnnotator: a user-friendly pipeline for microbial genomes assembly and annotation. FEMS Microbiol Lett 2016; 363:fnw049 [CrossRef]
    [Google Scholar]
  21. Lugli GA, Milani C, Turroni F, Duranti S, Mancabelli L et al. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genomics 2017; 18:568 [CrossRef]
    [Google Scholar]
  22. Lugli GA, Milani C, Turroni F, Duranti S, Ferrario C et al. Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl Environ Microbiol 2014; 80:63836394 [CrossRef]
    [Google Scholar]
  23. Duranti S, Lugli GA, Viappiani A, Mancabelli L, Alessandri G et al. Characterization of the phylogenetic diversity of two novel species belonging to the genus Bifidobacterium: Bifidobacterium cebidarum sp. nov. and Bifidobacterium leontopitheci sp. nov. Int J Syst Evol Microbiol 2020; 70:2288–2297 [CrossRef]
    [Google Scholar]
  24. Zhao Y, Wu J, Yang J, Sun S, Xiao J et al. PGAP: pan-genomes analysis pipeline. Bioinformatics 2012; 28:416–418 [CrossRef]
    [Google Scholar]
  25. Enright AJ, Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002; 30:15751584 [CrossRef]
    [Google Scholar]
  26. Schumann P. Peptidoglycan structure. Method Microbiol 2011101–129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004378
Loading
/content/journal/ijsem/10.1099/ijsem.0.004378
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error