1887

Abstract

A novel actinomycete, designated WYY166, was isolated from the rhizosphere of Moq. collected in Dongfang, PR China. The taxonomic position of this strain was investigated using a polyphasic approach. Phylogenetic analysis based on its 16S rRNA gene referred strain WYY166 to the genus , and it was most closely related to the type strains HMC10, DSM 43926, NBRC 106687 and DSM 43925 (98.35, 97.60, 97.36 and 97.30% sequence similarity, respectively). Genome sequencing revealed a genome size of 11.27 Mbp and a G+C content of 71.10 mol%. The genome average nucleotide identity (ANI) values and the digital DNA - DNA hybridization (dDDH) values between strain WYY166 and the other species of the genus were found to be low (ANI 81.63~85.23 %, dDDH 23.6~31.6 %), suggesting that it represented a new species. The physiological evaluation showed that it had remarkable nitrate reduction activity. The whole-cell hydrolysates contained -diaminopimelic acid and madurose. The -acyl type of muramic acid was acetyl. The major menaquinones were MK-9 (H) (86.9 %) and MK-9 (H) (13.1 %). The predominant fatty acids were iso-C (53.2 %), 10-methyl C (10.7 %), C 6 (8.3 %) and iso-C h (7.3 %). These physiological, biochemical and chemotaxonomic data suggested that strain WYY166 should be classified as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is WYY166 (=MCCC 1K03779=KCTC 49343).

Funding
This study was supported by the:
  • , Fujian Provincial Department of Science and Technology, http://dx.doi.org/10.13039/501100005270, (Award 2019N0018)
  • , STCSM International Science and Technology Cooperation Program , (Award 18390741000)
  • , Startup Fund for Youngman Research at SJTU , (Award 17X100040064)
  • , Shanghai Municipal Council of Science and Technology , (Award 19ZR1475600)
  • , National Natural Science Foundation of China , (Award 31700027)
  • , National Natural Science Foundation of China , (Award 21661140002)
  • , National Natural Science Foundation of China, http://dx.doi.org/10.13039/501100001809, (Award 31770034)
  • , National Key Research and Development Program of China , (Award 2018YFA0901900)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004377
2020-08-13
2020-10-20
Loading full text...

Full text loading...

References

  1. Zhang Z, Wang Y, Ruan J. Reclassification of Thermomonospora and Microtetraspora . Int J Syst Bacteriol 1998; 48 Pt 2:411–422 [CrossRef][PubMed]
    [Google Scholar]
  2. Chiba S, Suzuki M, Ando K. Taxonomic re-evaluation of 'Nocardiopsis' sp. K-252(T) (= NRRL 15532(T)): a proposal to transfer this strain to the genus Nonomuraea as Nonomuraea longicatena sp. nov. Int J Syst Bacteriol 1999; 49:1623–1630 [CrossRef][PubMed]
    [Google Scholar]
  3. Huang H, Liu M, Zhong W, Mo K, Zhu J et al. Nonomuraea mangrovi sp. nov., an actinomycete isolated from mangrove soil. Int J Syst Evol Microbiol 2018; 68:3144–3148 [CrossRef][PubMed]
    [Google Scholar]
  4. Xi L, Zhang L, Ruan J, Huang Y, sp Nmaritima. Nonomuraea maritima sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2011; 61:2740–2744 [CrossRef][PubMed]
    [Google Scholar]
  5. Suksaard P, Mingma R, Srisuk N, Matsumoto A, Takahashi Y et al. Nonomuraea purpurea sp. nov., an actinomycete isolated from mangrove sediment. Int J Syst Evol Microbiol 2016; 66:4987–4992 [CrossRef][PubMed]
    [Google Scholar]
  6. Wang F, Xu X-X, Qu Z, Wang C, Lin H-P et al. Nonomuraea wenchangensis sp. nov., isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol 2011; 61:1304–1308 [CrossRef][PubMed]
    [Google Scholar]
  7. Nonomura H, Ohara Y. Distribution of actinomycetes in soil XI. Some new species of the genus Actinomadura Lechevalier, et al. J Ferment Technol 1971; 49:904–912
    [Google Scholar]
  8. Quintana E, Maldonado L, Goodfellow M. Nonomuraea terrinata sp. nov., a novel soil actinomycete. Antonie van Leeuwenhoek 2003; 84:1–6 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50:2031–2036 [CrossRef][PubMed]
    [Google Scholar]
  10. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  11. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  12. Roes Mle, Meyers PR. Nonomuraea candida sp. nov., a new species from South African soil. Antonie Van Leeuwenhoek 2008; 93:133–139 [CrossRef][PubMed]
    [Google Scholar]
  13. Terekhova LP, Galatenko OA, Preobrazhenskaia TP. [New species, Actinomadura fulvescens sp. nov. and Actinomadura turkmeniaca sp. nov. and their antagonistic properties]. Antibiotiki 1982; 27:87–92[PubMed]
    [Google Scholar]
  14. Kroppenstedt RM, Stackebrandt E, Goodfellow M. Taxonomic revision of the actinomycete genera Actinomadura and Microtetraspora . Syst Appl Microbiol 1990; 13:148–160 [CrossRef]
    [Google Scholar]
  15. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [CrossRef]
    [Google Scholar]
  16. Waksman SA. The Actinomycetes, a Summary of Current Knowledge New York: Ronald Press; 1968
    [Google Scholar]
  17. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  18. Xu L, Li W, Liu Z. Actinomycetes Systematics: Principle, Method & Practice Beijing: Science Press; 2007
    [Google Scholar]
  19. Smibert RM, Krieg RN. Phenotypic characterization. In Methods for General and Molecular Bacteriology 1 American Society for Microbiology.; 1994 pp 611–651
    [Google Scholar]
  20. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [CrossRef][PubMed]
    [Google Scholar]
  21. Uchida K, Aida KO. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984; 30:131–134 [CrossRef]
    [Google Scholar]
  22. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides . J Bacteriol 1982; 151:828–837 [CrossRef][PubMed]
    [Google Scholar]
  23. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [CrossRef]
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  25. Liao Y-C, Lin S-H, Lin H-H. Completing bacterial genome assemblies: strategy and performance comparisons. Sci Rep 2015; 5:8747 [CrossRef][PubMed]
    [Google Scholar]
  26. Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min 2015; 8:1 [CrossRef][PubMed]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  29. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [CrossRef][PubMed]
    [Google Scholar]
  30. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [CrossRef][PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  32. Kämpfer P, Kroppenstedt RM, Grün-Wollny I. Nonomuraea kuesteri sp. nov. Int J Syst Evol Microbiol 2005; 55:847–851 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004377
Loading
/content/journal/ijsem/10.1099/ijsem.0.004377
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error