1887

Abstract

A Gram-stain-positive actinobacterial strain, designated ANK073, was isolated from rhizosphere soil sampled at a spinach farming field in Shinan, Republic of Korea. Cells of strain ANK073 were found to be aerobic, non-motile, non-spore-forming rods which could grow at 20–40 °C (optimum, 30 °C), at pH 6.0–10.0 (optimum, pH 6.5–7.5) and at salinities of 0–4 % (w/v) NaCl (optimum, 0 % NaCl). The 16S rRNA gene sequence analysis showed that strain ANK073 belongs to the genus with high sequence similarities to CD5 (98.8 %), SJ-23 (98.5 %) and IY07-20 (98.4 %). The phylogenetic analysis indicated that strain ANK073 formed a distinct phyletic line in the genus and the results of DNA–DNA relatedness and phylogenomic analysis based on whole genome sequences demonstrated that strain ANK073 could be separated from its closest relatives in the genus . The strain contained 2,4-diaminobutylic acid, glycine, -glutamic acid and -alanine in the peptidoglycan. The predominant menaquinones were identified as MK-12 and MK-11, and the major fatty acids were anteiso-C, anteiso-C and iso-C. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The G+C content of the genome was determined to be 70.2 mol%. On the basis of its phenotypic and chemotaxonomic properties and the results of phylogenetic and phylogenomic analyses, strain ANK073 is considered to represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is ANK073 (=KACC 18683=NBRC 111825).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004376
2020-08-13
2021-08-02
Loading full text...

Full text loading...

References

  1. Gledhill WE, Casida LE. Predominant catalase-negative soil bacteria. III. Agromyces, gen. N., microorganisms intermediary to Actinomyces and Nocardia . Appl Microbiol 1969; 18:340–349 [View Article][PubMed]
    [Google Scholar]
  2. Zgurskaya HI, Evtushenko LI, Akimov VN, Voyevoda HV, Dobrovolskaya TG et al. Emended description of the genus Agromyces and description of Agromyces cerinus subsp. cerinus sp. nov., subsp. nov., Agromyces cerinus subsp. nitratus sp. nov., subsp. nov., Agromyces fucosus subsp. fucosus sp. nov., subsp. nov., and Agromyces fucosus subsp. hippuratus sp. nov., subsp. nov. Int J Syst Bacteriol 1992; 42:635–641 [View Article]
    [Google Scholar]
  3. Jurado V, Groth I, Gonzalez JM, Laiz L, Saiz-Jimenez C. Agromyces salentinus sp. nov. and Agromyces neolithicus sp. nov. Int J Syst Evol Microbiol 2005; 55:153–157 [View Article][PubMed]
    [Google Scholar]
  4. Sun T, Cao P, Sun K, Li C, Jiang M et al. Agromyces tardus sp. nov., an actinobacterium isolated from the rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2019; 69:3268–3275 [View Article][PubMed]
    [Google Scholar]
  5. Hamada M, Shibata C, Ishida Y, Tamura T, Yamamura H et al. Agromyces irimotensis sp. nov. and Agromyces subtropicus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:833–838 [View Article][PubMed]
    [Google Scholar]
  6. Jurado V, Groth I, Gonzalez JM, Laiz L, Schuetze B et al. Agromyces italicus sp. nov., Agromyces humatus sp. nov. and Agromyces lapidis sp. nov., isolated from Roman catacombs. Int J Syst Evol Microbiol 2005; 55:871–875 [View Article][PubMed]
    [Google Scholar]
  7. Akimov VN, Evtushenko L. Genus IV. Agromyces . In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology 5, 2nd edn. New York: Springer.; 2012 pp 862–876
    [Google Scholar]
  8. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci U S A 1992; 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  9. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  12. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  16. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  18. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the AD hoc Committee on reconciliation of approches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  20. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  21. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
  22. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  26. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article][PubMed]
    [Google Scholar]
  27. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  28. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  29. Murray RGE, Doetsch RN, Robinow F. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 21–41
    [Google Scholar]
  30. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  31. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184 [View Article][PubMed]
    [Google Scholar]
  32. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article][PubMed]
    [Google Scholar]
  33. Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol 1951; 26:192–195 [View Article][PubMed]
    [Google Scholar]
  34. Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 1987; 160:47–56 [View Article][PubMed]
    [Google Scholar]
  35. Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 1999; 170:265–270 [View Article][PubMed]
    [Google Scholar]
  36. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  37. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article][PubMed]
    [Google Scholar]
  38. Yabuuchi E, Kosako Y, Naka T, Suzuki S, Yano I. Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiol Immunol 1999; 43:339–349 [View Article][PubMed]
    [Google Scholar]
  39. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99–119 [View Article][PubMed]
    [Google Scholar]
  40. Schumann P. Rainey F, Oren A. (editors) Peptidoglycan Structure. In Taxonomy of Prokaryotes, Methods in Microbiology 38 London: Academic Press; 2011 pp 101–129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004376
Loading
/content/journal/ijsem/10.1099/ijsem.0.004376
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error