1887

Abstract

A Gram-stain-negative, non-flagellated bacterium, designated ZY111, was isolated from the surface of a marine red alga, which was collected from the coast in Weihai, Shandong Province, PR China. Strain ZY111 exhibited growth at 4–37 °C (optimum, 25–28 °C) in the presence of 0–8.0 % (w/v) NaCl (optimum, 2.0–4.0% NaCl) and at pH 6.5–9.5 (optimum, pH 7.0–8.0). The 16S rRNA gene sequence analysis revealed that strain ZY111 belonged to the genus , with DSM 29199 as its closest relative (97.7 % similarity). The averagenucleotide identity value of strain ZY111 with DSM 29199 was 79.03 %. The digitalDNA–DNA hybridization value of strain ZY111 with DSM 29199 was 22.40 %. The dominant fatty acids were iso-C, iso-C G, iso-C 3-OH and iso-C 3-OH. The sole respiratory quinone was determined to be menaquinone-6. The polar lipid profile of strain ZY111 consisted of phosphatidylethanolamine, two unidentified aminolipids and three unidentified lipids. The G+C content was 31.9 mol%. The phenotypic, chemotaxonomic and phylogenetic data clearly showed that strain ZY111 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is ZY111 (=KCTC 62373=MCCC 1H00295).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004375
2020-08-12
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/9/5048.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004375&mimeType=html&fmt=ahah

References

  1. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  2. Nedashkovskaya OI, Kim SB, Han SK, Rhee M-S, Lysenko AM et al. Algibacter lectus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from green algae. Int J Syst Evol Microbiol 2004; 54:1257–1261 [View Article][PubMed]
    [Google Scholar]
  3. Park SC, Hwang YM, Lee JH, Baik KS, Seong CN. Algibacter agarivorans sp. nov. and Algibacter agarilyticus sp. nov., isolated from seawater, reclassification of Marinivirga aestuarii as Algibacter aestuarii comb. nov. and emended description of the genus Algibacter . Int J Syst Evol Microbiol 2013; 63:3494–3500 [View Article][PubMed]
    [Google Scholar]
  4. Zhang D-C, Wu J, Neuner K, Yao J, Margesin R. Algibacter amylolyticus sp. nov., isolated from intertidal sediment. Int J Syst Evol Microbiol 2015; 65:1556–1560 [View Article][PubMed]
    [Google Scholar]
  5. Park S, Jung Y-T, Yoon J-H. Algibacter miyuki sp. nov., a member of the family Flavobacteriaceae isolated from leachate of a brown algae reservoir. Antonie van Leeuwenhoek 2013; 104:253–260 [View Article][PubMed]
    [Google Scholar]
  6. Nedashkovskaya OI, Vancanneyt M, Kim SB, Hoste B, Bae KS. Algibacter mikhailovii sp. nov., a novel marine bacterium of the family Flavobacteriaceae, and emended description of the genus Algibacter . Int J Syst Evol Microbiol 2007; 57:2147–2150 [View Article][PubMed]
    [Google Scholar]
  7. Mu D-S, Liang Q-Y, Wang X-M, Lu D-C, Shi M-J et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018; 6:230 [View Article][PubMed]
    [Google Scholar]
  8. Liu Q-Q, Wang Y, Li J, Du Z-J, Chen G-J. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014; 64:2204–2209 [View Article][PubMed]
    [Google Scholar]
  9. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  10. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  12. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  16. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article][PubMed]
    [Google Scholar]
  17. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  18. McCarthy MW, Walsh TJ, Matthew WM, Thomas JW. Amino acid metabolism and transport mechanisms as potential antifungal targets. Int J Mol Sci 2018; 19:909 [View Article][PubMed]
    [Google Scholar]
  19. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  20. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society For Microbiology; 1994 pp 611–651
    [Google Scholar]
  21. Xia H-F, Li X-L, Liu Q-Q, Miao T-T, Du Z-J et al. Salegentibacter echinorum sp. nov., isolated from the sea urchin Hemicentrotus pulcherrimus . Antonie van Leeuwenhoek 2013; 104:315–320 [View Article][PubMed]
    [Google Scholar]
  22. Cowan ST, Steel KJ. Bacterial Characters and Characterization, 2nd ed. Cambridge, UK: Cambridge University Press; 1974
    [Google Scholar]
  23. CLSI Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Second Informational Supplement CLSI document M100-S22 Wayne, PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  24. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  25. Tindall BJ, Sikorski J, Smibert RM, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp 330–393
    [Google Scholar]
  26. Park SC, Hwang YM, Choe HN, Baik KS, Kim H et al. Algibacter aquimarinus sp. nov., isolated from a marine environment, and reclassification of Pontirhabdus pectinivorans as Algibacter pectinivorans comb. nov. Int J Syst Evol Microbiol 2013; 63:2038–2042 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004375
Loading
/content/journal/ijsem/10.1099/ijsem.0.004375
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error