1887

Abstract

A novel Gram-stain-negative, aerobic, rod-shaped and indole acetic acid-producing strain, designated 7209-2, was isolated from rhizosphere of rape ( L.) grown in the Yakeshi City, Inner Mongolia, PR China. The 16S rRNA gene sequence analysis indicated that strain 7209-2 belongs to the genus and is closely related to W3, shin9-1 and W44 with sequence similarities of 98.2, 98.1 and 97.9 %, respectively. Phylogenetic analysis based on concatenated housekeeping and gene sequences showed that strain 7209-2 formed a group together with W44 and W3, with sequences similarities of 92.6 and 91.1 %, respectively. The genome size of strain 7209-2 was 5.25 Mb, comprising 5027 predicted genes with a DNA G+C content of 61.2 mol%. The average nucleotide identity and digital DNA–DNA hybridization comparisons among 7209-2 and reference strains for the most closely related species showed values below the accepted threshold for species discrimination. The major fatty acids of strain 7209-2 were summed feature 8 (C 7 and/or C 6) and summed feature 2 (C aldehyde and/or unknown 10.953) . The major polar lipids were found to consist of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and an unidentified aminophospholipid. The predominant ubiquinone was identified as quinone 10. Based on all the above results, strain 7209-2 represents a novel species of the genus , for which the name sp. nov. is proposed with 7209-2 (=CGMCC 1.15691=DSM 103161) as the type strain.

Funding
This study was supported by the:
  • Science & Technology Innovation Project of Beijing Academy of Agricultural and Forestry Sciences (Award KJCX20200519)
    • Principle Award Recipient: Jun-lian Gao
  • National Natural Science Foundation of China (Award No. 31870003)
    • Principle Award Recipient: Jian-guang Sun
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004374
2020-08-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/9/5019.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004374&mimeType=html&fmt=ahah

References

  1. Frank B. Uber die Pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 1889; 7:332–346
    [Google Scholar]
  2. Kuykendall LD, Young JM, Martínez-Romero E, Kerr A, Sawada H. Rhizobium. In Bergey's Manual of Systematics of Archaea and Bacteria 2015 pp 1–36
    [Google Scholar]
  3. Kuykendall LD. Family I. Rhizobiaceae Conn 1938, 321AL . In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriololgy 2, 2nd ed. New York: Springer; 2005 pp 324–361
    [Google Scholar]
  4. Yuan T, Liu L, Huang S, Taher AH, Tan Z et al. Rhizobium wuzhouense sp. nov., isolated from roots of Oryza officinalis . Int J Syst Evol Microbiol 2018; 68:2918–2923 [View Article][PubMed]
    [Google Scholar]
  5. Gao J-L, Sun P, Wang X-M, Lv F-Y, Mao X-J et al. Rhizobium wenxiniae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2017; 67:2798–2803 [View Article][PubMed]
    [Google Scholar]
  6. Sheu S-Y, Chen Z-H, Young C-C, Chen W-M. Rhizobium ipomoeae sp. nov., isolated from a water convolvulus field. Int J Syst Evol Microbiol 2016; 66:1633–1640 [View Article][PubMed]
    [Google Scholar]
  7. Panday D, Schumann P, Das SK. Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L). Int J Syst Evol Microbiol 2011; 61:2632–2639 [View Article][PubMed]
    [Google Scholar]
  8. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis . Int J Syst Evol Microbiol 2001; 51:89–103 [View Article][PubMed]
    [Google Scholar]
  9. Tighe SW, de Lajudie P, Dipietro K, Lindström K, Nick G et al. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 2000; 50 Pt 2:787–801 [View Article][PubMed]
    [Google Scholar]
  10. Arruda L, Beneduzi A, Martins A, Lisboa B, Lopes C et al. Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio grande do Sul state (South Brazil) and analysis of their potential to improve plant growth. Applied Soil Ecology 2013; 63:15–22 [View Article]
    [Google Scholar]
  11. Patten CL, Blakney AJC, Coulson TJD, Activity CTJD. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 2013; 39:395–415 [View Article][PubMed]
    [Google Scholar]
  12. Sun YM, Zhang NN, Wang ET, Yuan HL, Yang JS et al. Influence of intercropping and intercropping plus rhizobial inoculation on microbial activity and community composition in rhizosphere of alfalfa (Medicago sativa L.) and Siberian wild rye (Elymus sibiricus L.). FEMS Microbiol Ecol 2009; 70:218–226 [View Article]
    [Google Scholar]
  13. Kaur J, Verma M, Lal R. Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Muller 1986 as Rhizobium aggregatum comb. nov. Int J Syst Evol Microbiol 2011; 61:1218–1225 [View Article][PubMed]
    [Google Scholar]
  14. Chen W-M, Zhu W-F, Bontemps C, Young JPW, Wei GH. Mesorhizobium alhagi sp. nov. isolated from wild Alhagi sparsifolia in north-western China. Int J Syst Evol Microbiol 2010; 60:958–962 [View Article][PubMed]
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA sequencing. In Stackerandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematic Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  16. Yoon S-H, S-M H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2016
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  19. Zhang YM, Tian CF, Sui XH, Chen WF, Chen WX. Robust markers reflecting phylogeny and taxonomy of rhizobia. PLoS One 2012; 7:e44936 [View Article][PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  21. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  22. Wang Q, Zhu W, Wang ET, Zhang LS, Li X et al. Genomic identification of rhizobia-related strains and threshold of ANI and core-genome for family, genus and species. Int J Environ Agri Res 2016; 2:76–86
    [Google Scholar]
  23. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp 309–329
    [Google Scholar]
  24. Delory GE, King EJ. A sodium carbonate-bicarbonate buffer for alkaline phosphatases. Biochem J 1945; 39:245 [View Article]
    [Google Scholar]
  25. Gao J-L, Sun P, Wang X-M, Cheng S, Lv F et al. Sphingomonas zeicaulis sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2016; 66:3755–3760 [View Article][PubMed]
    [Google Scholar]
  26. Gutierrez CK, Matsui GY, Lincoln DE, Lovell CR. Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Appl Environ Microbiol 2009; 75:2253–2258 [View Article][PubMed]
    [Google Scholar]
  27. Xin K, Li M, Chen C, Yang X, Li Q et al. Paenibacillus qinlingensis sp. nov., an indole-3-acetic acid-producing bacterium isolated from roots of Sinopodophyllum hexandrum (Royle) Ying. Int J Syst Evol Microbiol 2017; 67:589–595 [View Article][PubMed]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  30. Consden R, Gordon AH. Effect of salt on partition chromatograms. Nature 1948; 162:180–181 [View Article][PubMed]
    [Google Scholar]
  31. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  32. Collins M, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptido-glycans based on 2,4-diaminobutyric acid. J Appl Microbiol 1980; 48:459–470
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–287
    [Google Scholar]
  35. Wu C, Lu X, Qin M, Wang Y, Ruan J. The analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 1989; 16:176–178
    [Google Scholar]
  36. Wei X, Yan S, Li D, Pang H, Li Y et al. Rhizobium helianthi sp. nov., isolated from the rhizosphere of sunflower. Int J Syst Evol Microbiol 2015; 65:4455–4460 [View Article][PubMed]
    [Google Scholar]
  37. Rozahon M, Ismayil N, Hamood B, Erkin R, Abdurahman M et al. Rhizobium populi sp. nov., an endophytic bacterium isolated from Populus euphratica . Int J Syst Evol Microbiol 2014; 64:3215–3221 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004374
Loading
/content/journal/ijsem/10.1099/ijsem.0.004374
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error