gen. nov., sp. nov., a novel representative of the phylum and proposal of fam. nov., ord. nov. and class. nov. Free

Abstract

is widespread and ecologically important in various anoxic environments. However, the portion of culturable bacteria within this phylum is quite low and, in fact, there is only one currently described species. In this study, a novel anaerobic, non-motile, coccoid, Gram-stain-negative bacterial strain, designated S-5007, was isolated from surface marine sediment. The 16S rRNA gene sequence was found to have very low 16S rRNA gene sequence similarity to the nearest known type strain, L21-Fru-AB (84.9 %). The taxonomic position of the novel isolate was investigated using a polyphasic approach and comparative genomic analysis. Phylogenetic analyses based on 16S rRNA genes and genomes indicated that strain S-5007 branched within the radiation of the phylum . Different from the type strain, strain S-5007 can grow under microaerobic conditions, and the genomes of strain S-5007 and the other strains in its branch have many more antioxidant-related genes. Meanwhile, other different metabolic features deduced from genome analysis supported the separate evolution of the proposed class (strain S-5007 branch) and L21-Fru-AB. Based on phylogenetic and phenotypic characterization studies, gen. nov., sp. nov. is proposed with S-5007 (=MCCC 1H00402=KCTC 15876) as the type strain, as the first representative of novel taxa, ord. nov., fam. nov. in class. nov.

Funding
This study was supported by the:
  • Technology Fundamental Resources Investigation Program of China (Award 2019FY100700)
    • Principle Award Recipient: Da-Shuai Mu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004370
2020-08-12
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/9/5001.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004370&mimeType=html&fmt=ahah

References

  1. Wagner M, Horn M. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 2006; 17:241–249 [View Article][PubMed]
    [Google Scholar]
  2. Devos DP, Reynaud EG. Intermediate steps. Science 2010; 330:1187–1188 [View Article]
    [Google Scholar]
  3. Spring S, Bunk B, Spröer C, Schumann P, Rohde M et al. Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum. ISME J 2016; 10:2801–2816 [View Article][PubMed]
    [Google Scholar]
  4. Hugenholtz P, Goebel BM, Pace NR. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 1998; 180:4765–4774 [View Article][PubMed]
    [Google Scholar]
  5. Shepherd ML, Swecker WS, Jensen RV, Ponder MA. Characterization of the fecal bacteria communities of forage-fed horses by pyrosequencing of 16S rRNA V4 gene amplicons. FEMS Microbiol Lett 2012; 326:62–68 [View Article][PubMed]
    [Google Scholar]
  6. He Z, Piceno Y, Deng Y, Xu M, Lu Z et al. The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. Isme J 2012; 6:259–272 [View Article][PubMed]
    [Google Scholar]
  7. Cardman Z, Arnosti C, Durbin A, Ziervogel K, Cox C et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an Arctic fjord of Svalbard. Appl Environ Microbiol 2014; 80:3749–3756 [View Article][PubMed]
    [Google Scholar]
  8. Spring S, Brinkmann N, Murrja M, Spröer C, Reitner J et al. High diversity of culturable prokaryotes in a lithifying hypersaline microbial mat. Geomicrobiol J 2015; 32:332–346 [View Article]
    [Google Scholar]
  9. Mu DS, Liang QY, Wang XM, Lu DC, Shi MJ et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018; 6:230 [View Article][PubMed]
    [Google Scholar]
  10. Du ZJ, Wang Y, Dunlap C, Rooney AP, Chen GJ. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:1690–1696 [View Article][PubMed]
    [Google Scholar]
  11. Liu QQ, Li XL, Rooney AP, Du ZJ, Chen GJ. Tangfeifania diversioriginum gen. nov., sp. nov., a representative of the family Draconibacteriaceae . Int J Syst Evol Microbiol 2014; 64:3473–3477 [View Article][PubMed]
    [Google Scholar]
  12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  14. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed]
    [Google Scholar]
  15. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article][PubMed]
    [Google Scholar]
  16. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article][PubMed]
    [Google Scholar]
  17. Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 2016; 44:W232–W235 [View Article][PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  19. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  20. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2020; 36:1925–1927
    [Google Scholar]
  21. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. . Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  22. Xiao CL, Chen Y, Xie SQ, Chen KN, Wang Y et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat Methods 2017; 14:1072–1074 [View Article][PubMed]
    [Google Scholar]
  23. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article][PubMed]
    [Google Scholar]
  24. Lowe TM, Chan PP. tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 2016; 44:W54–W57 [View Article][PubMed]
    [Google Scholar]
  25. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  26. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B et al. The COG database:anupdated version includes eukaryotes. BMC Bioinformatics 2003; 41:4
    [Google Scholar]
  27. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article][PubMed]
    [Google Scholar]
  28. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS 2008; 12:137–141 [View Article][PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  31. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. . A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  32. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  33. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  34. Lumppio HL, Shenvi NV, Summers AO, Voordouw G, Kurtz DM. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J Bacteriol 2001; 183:101–108 [View Article][PubMed]
    [Google Scholar]
  35. Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T et al. . Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci U S A 2003; 100:8298–8303 [View Article][PubMed]
    [Google Scholar]
  36. Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PSG et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia . PLoS One 2012; 7:e35314 [View Article][PubMed]
    [Google Scholar]
  37. Fournier M, Dermoun Z, Durand MC, Dolla A. A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress. J Biol Chem 2004; 279:1787–1793 [View Article][PubMed]
    [Google Scholar]
  38. Jenney FE, Verhagen MF, Cui X, Adams MW. Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 1999; 286:306–309 [View Article][PubMed]
    [Google Scholar]
  39. Baumgarten A, Redenius I, Kranczoch J, Cypionka H. Periplasmic oxygen reduction by Desulfovibrio species. Arch Microbiol 2001; 176:306–309 [View Article][PubMed]
    [Google Scholar]
  40. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  41. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society For Microbiology; 1994 pp 611–651
    [Google Scholar]
  42. Krist KA, Ross T, McMeekin TA. Final optical density and growth rate; effects of temperature and NaCl differ from acidity. Int J Food Microbiol 1998; 43:195–203 [View Article][PubMed]
    [Google Scholar]
  43. Dong X, Cai M. Determination of biochemical characteristics. In Dong XZ, Cai MY. (editors) Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001 pp 370–398
    [Google Scholar]
  44. Tindall BJ, Sikorski J, Smibert RM, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp 330–393
    [Google Scholar]
  45. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  46. Fang DB, Han JR, Liu Y, Du ZJ. Seonamhaeicola marinus sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2017; 67:4857–4861 [View Article][PubMed]
    [Google Scholar]
  47. Zoetendal EG, Plugge CM, Akkermans ADL, de Vos WM. Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol 2003; 53:211–215 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004370
Loading
/content/journal/ijsem/10.1099/ijsem.0.004370
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed